中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
A unified online dictionary learning framwork with label information for robust object tracking

文献类型:会议论文

作者Fan BJ(范保杰); Sun J(孙静); Cong Y(丛杨); Du YK(杜英魁)
出版日期2014
会议名称22nd International Conference on Pattern Recognition, ICPR 2014
会议日期August 24-28, 2014
会议地点Stockholm, Sweden
关键词Label information the unified objective function for online dictionary learning optimal linear multi-classifier
页码2311-2316
中文摘要In this paper, a supervised approach to online learn a structured sparse and discriminative representation for object tracking is presented. Label information from training data is incorporated into the dictionary learning process to construct a robust and discriminative dictionary. This is accomplished by adding an ideal-code regularization term and classification error term to the unified objective function. By minimizing the unified objective function we learn the high quality dictionary and optimal linear multi-classifier jointly. Combined with robust sparse coding, the learned classifier is employed directly to separate the object from background. As the tracking continues, the proposed algorithm alternates between robust sparse coding and dictionary updating. Experimental evaluations on the challenging sequences show that the proposed algorithm performs favorably against state-of-the-art methods in terms of effectiveness, accuracy and robustness.
收录类别EI ; CPCI(ISTP)
产权排序2
会议录Proceedings; International Conference on Pattern Recognition
会议录出版者IEEE
会议录出版地Piscataway, NJ
语种英语
ISSN号1051-4651
ISBN号978-1-4799-5208-3
WOS记录号WOS:000359818002072
源URL[http://ir.sia.cn/handle/173321/15611]  
专题沈阳自动化研究所_机器人学研究室
推荐引用方式
GB/T 7714
Fan BJ,Sun J,Cong Y,et al. A unified online dictionary learning framwork with label information for robust object tracking[C]. 见:22nd International Conference on Pattern Recognition, ICPR 2014. Stockholm, Sweden. August 24-28, 2014.

入库方式: OAI收割

来源:沈阳自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。