中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Online discriminative dictionary learning via label information for multi task object tracking

文献类型:会议论文

作者Fan BJ(范保杰); Du YK(杜英魁); Gao, Hao; Wang, Baoyun
出版日期2014
会议名称2014 IEEE International Conference on Multimedia and Expo, ICME 2014
会议日期July 14-18, 2014
会议地点Chengdu, China
关键词label information discriminative dictionary learning multi task learning object tracking
页码1-6
中文摘要In this paper, a supervised approach to online learn a structured sparse and discriminative representation for object tracking is presented. Label information from training data is incorporated into the dictionary learning process to construct a compact and discriminative dictionary. This is accomplished by adding an ideal-code regularization term and classification error term to the total objective function. By minimizing the total objective function, we learn the high quality dictionary and optimal linear multi-classifier simultaneously. Combined with multi task sparse learning, the learned classifier is employed directly to separate the object from background. As the tracking continues, the proposed algorithm alternates between multi task sparse coding and dictionary updating. Experimental evaluations on the challenging sequences show that the proposed algorithm performs favorably against state-of-the-art methods in terms of effectiveness, accuracy and robustness.
收录类别EI ; CPCI(ISTP)
产权排序2
会议主办者Baidu; BOCOM; et al.; NSF; NSFC; QIY
会议录Proceedings - IEEE International Conference on Multimedia and Expo
会议录出版者IEEE Computer Society
会议录出版地Washington, DC
语种英语
ISSN号1945-7871
ISBN号978-1-4799-4761-4
WOS记录号WOS:000360831800126
源URL[http://ir.sia.cn/handle/173321/16816]  
专题沈阳自动化研究所_机器人学研究室
推荐引用方式
GB/T 7714
Fan BJ,Du YK,Gao, Hao,et al. Online discriminative dictionary learning via label information for multi task object tracking[C]. 见:2014 IEEE International Conference on Multimedia and Expo, ICME 2014. Chengdu, China. July 14-18, 2014.

入库方式: OAI收割

来源:沈阳自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。