中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
基于视觉方法的输电线断股检测与机器人行为规划

文献类型:期刊论文

作者宋屹峰; 王洪光; 李贞辉; 姜勇
刊名机器人
出版日期2015
卷号37期号:2页码:204-211, 223
关键词电力机器人 断股检测 行为规划 支持向量机
ISSN号1002-0446
其他题名Vision Based Transmission Line Broken Strand Detection and Robot Behaviour Planning
产权排序1
中文摘要输电线维护机器人用于代替人工完成危险作业,准确的故障检测与合理的行为规划对于作业效果至关重要.针对以上需求,采用视觉方法,提出了一种基于图像特征分类的输电线断股检测方法.该方法提取边缘梯度向量作为图像特征,采用支持向量机方法进行分类运算完成线路断股检测.在断股检测的基础上,利用断股检测信息与机器人传感器测得的信息构建机器人状态向量.根据当前状态向量,结合机器人断股补修作业流程,提出了面向捋线与压接复杂作业的机器人断股补修作业行为规划方法.利用实验室模拟线路开展实验,验证了提出的输电线断股检测及行为规划方法的有效性.
英文摘要Power line maintenance robots are used to replace workers due to the dangerous maintenance operation, and the robot maintenance effect is much related with accurate fault detection and rational behavior planning. With those requirements in mind, a visual method is presented to detect the broken strand fault based on the classification of an image feature. In the visual detection method, image edge gradient histogram is firstly extracted as the image feature, and broken strand detection can be accomplished by the classification of the image feature with support vector machine (SVM) method. On this basis, several robot state vectors are established by combining the broken strand detection result and the information of robot sensors. Based on the current state vector and robotic broken strand repair process, a behavior planning method for broken strand repair is proposed toward complex operations of broken strand return and clamps installation. Experiments are carried out in the laboratory, and results demonstrate the effectiveness of the proposed broken strand detection method and the behavior planning method.
收录类别EI ; CSCD
语种中文
CSCD记录号CSCD:5414399
源URL[http://ir.sia.ac.cn/handle/173321/16189]  
专题沈阳自动化研究所_空间自动化技术研究室
推荐引用方式
GB/T 7714
宋屹峰,王洪光,李贞辉,等. 基于视觉方法的输电线断股检测与机器人行为规划[J]. 机器人,2015,37(2):204-211, 223.
APA 宋屹峰,王洪光,李贞辉,&姜勇.(2015).基于视觉方法的输电线断股检测与机器人行为规划.机器人,37(2),204-211, 223.
MLA 宋屹峰,et al."基于视觉方法的输电线断股检测与机器人行为规划".机器人 37.2(2015):204-211, 223.

入库方式: OAI收割

来源:沈阳自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。