中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
A hybrid ant colony optimisation algorithm for job shop problems and its convergence analysis

文献类型:期刊论文

作者Cao Y(曹阳); Shi HB(史海波)
刊名International Journal of Modelling, Identification and Control
出版日期2015
卷号23期号:3页码:230-237
关键词ant colony optimisation hybrid ACO tabu search convergence analysis job shop problems JSP Markov chain theory job shops
ISSN号1746-6172
产权排序1
中文摘要This paper presents a hybrid ant colony optimisation (HACO) algorithm for solving job shop problems. The criterion considered is the maximum completion time, the so-called makespan. The HACO algorithm improves the performance of intelligence optimisation algorithm, which adopts ant colony optimisation (ACO) algorithm to search in the global solution space, and tabu search (TS) algorithm is utilised as the local algorithm in each generation. The global asymptotic convergence of the hybrid algorithm is proved by Markov chain theory in the paper. By testing 13 hard benchmarks instance, the results demonstrate that the HACO algorithm is effective. Copyright
收录类别EI
语种英语
源URL[http://ir.sia.cn/handle/173321/16464]  
专题沈阳自动化研究所_数字工厂研究室
推荐引用方式
GB/T 7714
Cao Y,Shi HB. A hybrid ant colony optimisation algorithm for job shop problems and its convergence analysis[J]. International Journal of Modelling, Identification and Control,2015,23(3):230-237.
APA Cao Y,&Shi HB.(2015).A hybrid ant colony optimisation algorithm for job shop problems and its convergence analysis.International Journal of Modelling, Identification and Control,23(3),230-237.
MLA Cao Y,et al."A hybrid ant colony optimisation algorithm for job shop problems and its convergence analysis".International Journal of Modelling, Identification and Control 23.3(2015):230-237.

入库方式: OAI收割

来源:沈阳自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。