中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
波浪驱动无人水面机器人关键技术研究

文献类型:学位论文

作者田宝强
学位类别博士
答辩日期2015-05-30
授予单位中国科学院沈阳自动化研究所
授予地点中国科学院沈阳自动化研究所
导师张艾群
关键词波浪驱动无人水面机器人 波浪能 动力学分析 运动效率模型 实验平台
其他题名Research on Key Technology of Wave-driven Unmanned Surface Vehicle
学位专业机械电子工程
中文摘要波浪驱动无人水面机器人(Wave-driven Unmanned Surface Vehicle, WUSV)是一种利用波浪能获得驱动力,并通过太阳能来补充控制器、传感器等电子器件电能消耗的一种新概念海洋机器人。说其概念新不仅仅是因为其能量来源于波浪能和太阳能这两种新能源,而且其首先采用了浮体、系缆和水下滑翔体的多体结构的创新设计。WUSV完全实现了利用海洋新能源进行海洋观测研究,是海洋新能源在海洋工程领域应用的成功范例。波浪能和太阳能这两种新能源绿色环保清洁,取之不尽用之不竭,它们的综合利用使得WUSV具有超强的续航能力。此外,WUSV还具有负载能力强、面向不同应用可配置不同的传感测量设备、可实时传送数据等优点,非常适合大尺度的海洋观测研究。本文以海洋观测为应用背景,重点开展了波浪驱动无人水面机器人运动机理、动力学建模、水动力计算与仿真、效率分析等关键技术的研究。 本文以机器人学国家重点实验室资助课题“波浪驱动水面移动机器人研究(2012-Z05)”和国家自然科学基金项目“水下机器人海洋环境自主观测理论与技术(61233013)”为依托,对波浪驱动无人水面机器人的关键技术进行了深入研究,主要内容包括以下几个方面: (1) 波浪驱动无人水面机器人运动机理研究。WUSV作为一种新概念机器人,其驱动原理、本身结构和传统的水下机器人均不相同,对其进行运动机理研究是后续深入分析的基础。首先,本文对波浪驱动无人水面机器人的运动过程与机理进行总体介绍;然后,根据WUSV驱动方式的不同,将其分为翼板型,蹼翼型,螺旋桨驱动型三个类别,并对各个类别的优缺点进行归纳和总结。其中,翼板型WUSV是目前最简单,最成熟,也是应用最为广泛的型式,其他两种方式从不同方面对其波浪能转化过程以及其运动机理进行了分析。 (2) 波浪驱动无人水面机器人动力学建模。WUSV是由浮体、系缆和水下滑翔体组成的多体结构,这给WUSV动力学建模带来挑战。而传统的水下机器人,如AUV、ROV、USV等在动力学建模中一般都是将其看成由一个刚体组成的单体结构,其模型都是通过船模不同的简化获得的。本文首先将应用于工业机器人的D-H方法引用进来来描述WUSV的多体系统,并建立了WUSV的坐标系,值得注意的是这里引入了虚拟连杆的概念,虚拟连杆是没有质量的,它们的引入只是为了准确描述系统的位移和姿态等信息;然后,基于刚体力学,描述各个运动部分之间的相对速度和位置关系,并进行动能和势能的计算;最后基于拉格朗日力学方程建立了波浪驱动无人水面机器人的动力学方程。 (3) 波浪驱动无人水面机器人动力学仿真。在WUSV动力学建模的基础上,我们研究WUSV的动力学特性,就要进行其运动仿真。这里首先要确定动力学模型中刚度矩阵以及广义力的计算,刚度矩阵的确定需要各个运动部分的质量,转动惯量以及惯性水动力系数等,而广义力的计算主要是水动力的计算以及粘性水动力系数的辨识。波浪驱动无人水面机器人是靠波浪能来获得驱动力的,所以,波浪力就是该机器人作为一个系统的激励,其计算非常重要。而波浪运动是气液两相的非定常流动,本文通过线性波理论计算和Fine/Marine软件仿真两种手段对波浪力进行了分析和计算;通过ANSYS CFX完成了粘性类水动力仿真计算,并在大量的船模实验数据的基础上对惯性类水动力系数进行辨识;最后,分别对波浪驱动无人水面机器人的垂直面和水平面运动进行了动力学仿真。 (4) 波浪驱动无人水面机器人运动效率优化分析。本文首先分析了波浪驱动无人水面机器人的能量流动关系,在波浪能计算的基础上建立了WUSV的运动效率模型;然后,基于波浪驱动无人水面机器人的垂直面的动力学模型,对不同翼板旋角下的运动仿真结果进行了优化分析,结果发现当翼板旋角约在22°时,其运动的效率最高;最后,为了更加准确描述系缆的柔性以及在水动力作用下的弯曲状况,本文将系缆简化为通过一个关节连接的两个连杆,并建立了柔性系缆的动力学模型,进而对系缆进行了仿真分析,结果发现,从WUSV运动的效率和系统的稳定性两个方面考虑,系缆长度取6米为最优结果。 (5) 波浪驱动无人水面机器人实验验证。考虑到波浪运动的复杂性和实验条件的限制,本文首先通过电机、卷筒等建立了具有波浪模拟功能的波浪驱动无人水面机器人实验平台。然后设计了实验方案,分别测试了波高、波浪周期、翼板旋角等工况下的实验数据。结果对比发现,实验数据和仿真结果在数据变化趋势和翼板旋角优化分析上基本上是一致的,从而证明了动力学模型的正确性。
索取号TP242/T56/2015
英文摘要Wave-driven Unmanned Surface Vehicle(WUSV) is a new concept marine robot, getting the driving force from wave energy and compensating the power consumption of the controller, sensors and other electronic devices from solar energy respectively. It is the new concept of WUSV that not only because its energy source comes from these two kinds of new energy, wave energy and solar energy, but its innovative design of multi-body structure is firstly used in WUSV, consisting of Float body, Cable and Underwater glider body. WUSV has fully realized to use the marine energy for the ocean observation research, and it is a great success of the comprehensive application of the new energy. The wave and solar energy are all green, clean and endless inexhaustible energy, and their utilization in WUSV makes it have excellent endurance and very suitable for large area ocean observation. In addition, it also has the advantages of strong load capacity, real time data transmission, configurable sensor for different applications and so on. Based on the application background of ocean observations, this dissertation focuses on the key technologies of WUSV, such as its motion mechanism, dynamic modeling, hydrodynamic calculation and simulation, and efficiency analysis etc. Based on the State Key Laboratory of Robotics funded project “The study on the waves-driven unmanned surface vehicle (2012-Z05)”and the national natural science foundation of China funded projects” Autonomous observation technology of ocean environment with underwater vehicles(61233013)”, this dissertation conducts a deep research on the key technologies of WUSV. The main contents of this dissertation are as follows: (1) Research on the WUSV motion mechanism. As a new concept marine robot, WUSV’s driving principle and geometric construction are quite different from the traditional underwater vehicles, and the research on its movement mechanism is the foundation for the further in-depth theoretical analysis. Firstly, we give a general introduction of the WUSV movement process and mechanism; And then, according to different driving way of WUSV, it can be divided into three categories: the wing plate type, flipper type and propeller-driven type; Finally, the advantages and disadvantages of each category are generalized and summarized. The wing plate type of WUSV is the most simple, mature and also the most widely used type, while from the other two types(flipper type and propeller-driven type), the wave energy conversion process and its mechanism are analyzed from different aspects. (2) Lagrangian dynamic modeling of WUSV in three dimension based on D-H approach. With the multi-body structure, WUSV is made up of Float body, Cable and Underwater glider body, which brings challenges to its dynamics modeling. The traditional underwater vehicles, such as AUV (Autonomous Underwater Vehicle), ROV (Remotely Operated Vehicles) and USV (Unmanned Surface Vehicles) etc. are considered as the single structure composed of a rigid body and their dynamic model is obtained by simplifying the ship model in different ways. Firstly, this paper introduces the D-H approach applied in the field of manipulator dynamics, to describe the WUSV multibody structure and establish the WUSV coordinate reference systems. It is noted that this paper introduced virtual link concept to describe the relatively posture and position of each moving part in WUSV, where these virtual links are with no mass. And then,Based on the rigid body dynamics, the velocity and position of each moving part of WUSV are expressed and their kinetic and potential energy can be calculated; Finally, the dynamic model of WUSV in three dimension is established by Lagrangian mechanics. (3) Dynamic simulation on the WUSV. Based on the WUSV dynamic model above, we are going to study the dynamic characteristics of WUSV by its motion simulation. First of all, the WUSV stiffness matrix and the generalized force in its dynamic model should be determined, where the stiffness matrix mainly relates to various parts’ mass, inertia moment and inertia hydrodynamic coefficient etc, while the calculation of generalized force mainly includes the hydrodynamic analysis and the identification of viscous hydrodynamic coefficient. As known from discussion above, WUSV obtains the driving force from wave energy, where it is very important to calculate the wave force because this force is the input of WUSV system. Wave motion is unsteady flow of gas-liquid two phase, and in this paper, wave force is analyzed and calculated based on the linear wave theory calculation and Fine/Marine software simulation. The viscous hydrodynamic simulation is completed by ANSYS CFX software, and the inertia hydrodynamic coefficients are determined on the basis of the ship experimental data; Finally, the dynamics simulations of WUSV in horizontal and vertical profile are completed respectively. (4) Analysis of WUSV movement efficiency. This paper firstly analyzes the energy flow relation of WUSV, and the movement efficiency model of WUSV is established based on the analysis of energy flow. Then, based on the dynamic model of WUSV in longitudinal profile, simulation results under different wing rotation angles are optimized, and when the wing rotation angle is set to 22°, its movement efficiency can achieve the highest value. Finally, allowing for flexible cable deformation under hydrodynamic resistance, this paper simplifies the cable into two links through a joint, and establishes WUSV dynamic model with flexible cable. we perform the motion simulation of WUSV under different length of cable, and draw a conclusion that it is the most appropriate to set the cable length 6 m, considering its movement efficiency and stability. (5) Experimental verification of WUSV. Allowing for the complexity of wave motion and restriction on experimental condition, we firstly design and establish the WUSV experiment platform with the function of wave simulation through the motor, drum and so on. Then, the experiment scheme is designed and the experimental data is get under different wave height, wave period and wing rotation angle respectively. This paper compares the experimental data and dynamic simulation results and we can find that it is mainly consistent between its experimental data and theoretical simulation results on the change trend and optimization of wing rotation angles, which thus verifies the correctness of WUSV dynamic model.
语种中文
产权排序1
页码109页
源URL[http://ir.sia.ac.cn/handle/173321/16783]  
专题沈阳自动化研究所_水下机器人研究室
推荐引用方式
GB/T 7714
田宝强. 波浪驱动无人水面机器人关键技术研究[D]. 中国科学院沈阳自动化研究所. 中国科学院沈阳自动化研究所. 2015.

入库方式: OAI收割

来源:沈阳自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。