中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
基于稳定Hammerstein模型的在线软测量建模方法及应用

文献类型:期刊论文

作者丛秋梅; 苑明哲; 王宏
刊名化工学报
出版日期2015
卷号66期号:4页码:1380-1387
关键词Hammerstein模型 在线建模 软测量 预测 稳定学习 污水处理过程 稳定性
ISSN号0438-1157
其他题名On-line soft sensor based on stable Hammerstein model and its applications
产权排序1
中文摘要针对复杂工业过程中由于存在未建模动态和不确定干扰,导致关键变量的软测量精度下降的问题,提出了一种基于稳定Hammerstein模型(H模型)的在线软测量建模方法。H模型的非线性增益采用带有时变稳定学习算法的小波神经网络模型,线性系统部分采用基于递推最小二乘的ARX模型,基于输入到状态稳定性理论证明了H模型辨识误差的有界性。其中小波神经网络具有表征强非线性的特性,稳定学习算法可抑制未建模动态和不确定干扰的影响,改善了模型的预测精度和自适应能力。以典型非线性系统和实际污水处理过程为例进行了仿真研究,结果表明,基于稳定H模型的软测量方法具有较高的在线软测量精度。
英文摘要Aiming at the problem that the soft sensing precision of key variables deteriorates when unmodeled dynamics and uncertain disturbances exist in the complex industrial process, an on-line soft sensor based on stable Hammerstein model (H model) was presented. H model was composed of wavelet neural network with time-varying stable learning algorithm as nonlinear gain and ARX model with RLS (recursive least square) algorithm as linear part. The boundedness of identification error for H model was proved according to the Input-to-State Stability theory. Wavelet neural network could represent strong nonlinearity of the process, and the stable learning algorithm could restrain the influences of unmodeled dynamics and uncertain disturbances and improve prediction precision and self-adaptability. Simulations based on a nonlinear system and the wastewater treatment process showed that the soft sensing method presented in this paper possessed high prediction precision.
收录类别EI ; CSCD
语种中文
CSCD记录号CSCD:5393779
源URL[http://ir.sia.ac.cn/handle/173321/16155]  
专题沈阳自动化研究所_信息服务与智能控制技术研究室
推荐引用方式
GB/T 7714
丛秋梅,苑明哲,王宏. 基于稳定Hammerstein模型的在线软测量建模方法及应用[J]. 化工学报,2015,66(4):1380-1387.
APA 丛秋梅,苑明哲,&王宏.(2015).基于稳定Hammerstein模型的在线软测量建模方法及应用.化工学报,66(4),1380-1387.
MLA 丛秋梅,et al."基于稳定Hammerstein模型的在线软测量建模方法及应用".化工学报 66.4(2015):1380-1387.

入库方式: OAI收割

来源:沈阳自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。