中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Recurrent Neural Network for Non-Smooth Convex Optimization Problems With Application to the Identification of Genetic Regulatory Networks

文献类型:期刊论文

作者Cheng, Long1; Hou, Zeng-Guang1; Lin, Yingzi2; Tan, Min1; Zhang, Wenjun Chris3; Wu, Fang-Xiang3
刊名IEEE TRANSACTIONS ON NEURAL NETWORKS
出版日期2011-05-01
卷号22期号:5页码:714-726
关键词Convex genetic regulatory network identification non-smooth optimization problem recurrent neural network
英文摘要A recurrent neural network is proposed for solving the non-smooth convex optimization problem with the convex inequality and linear equality constraints. Since the objective function and inequality constraints may not be smooth, the Clarke's generalized gradients of the objective function and inequality constraints are employed to describe the dynamics of the proposed neural network. It is proved that the equilibrium point set of the proposed neural network is equivalent to the optimal solution of the original optimization problem by using the Lagrangian saddle-point theorem. Under weak conditions, the proposed neural network is proved to be stable, and the state of the neural network is convergent to one of its equilibrium points. Compared with the existing neural network models for non-smooth optimization problems, the proposed neural network can deal with a larger class of constraints and is not based on the penalty method. Finally, the proposed neural network is used to solve the identification problem of genetic regulatory networks, which can be transformed into a non-smooth convex optimization problem. The simulation results show the satisfactory identification accuracy, which demonstrates the effectiveness and efficiency of the proposed approach.
WOS标题词Science & Technology ; Technology
类目[WOS]Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
研究领域[WOS]Computer Science ; Engineering
关键词[WOS]NONLINEAR-PROGRAMMING PROBLEMS ; VARIATIONAL-INEQUALITIES ; COMPOUND-MODE ; SYSTEMS ; MANIPULATORS ; STABILITY ; SUBJECT
收录类别SCI
语种英语
WOS记录号WOS:000290414400004
源URL[http://ir.ia.ac.cn/handle/173211/3455]  
专题自动化研究所_复杂系统管理与控制国家重点实验室_先进机器人控制团队
作者单位1.Chinese Acad Sci, Inst Automat, Key Lab Complex Syst & Intelligence Sci, Beijing 100190, Peoples R China
2.Northeastern Univ, Coll Engn, Mech & Ind Engn Dept, Boston, MA 02115 USA
3.Univ Saskatchewan, Dept Mech Engn, Saskatoon, SK S7N 5A9, Canada
推荐引用方式
GB/T 7714
Cheng, Long,Hou, Zeng-Guang,Lin, Yingzi,et al. Recurrent Neural Network for Non-Smooth Convex Optimization Problems With Application to the Identification of Genetic Regulatory Networks[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS,2011,22(5):714-726.
APA Cheng, Long,Hou, Zeng-Guang,Lin, Yingzi,Tan, Min,Zhang, Wenjun Chris,&Wu, Fang-Xiang.(2011).Recurrent Neural Network for Non-Smooth Convex Optimization Problems With Application to the Identification of Genetic Regulatory Networks.IEEE TRANSACTIONS ON NEURAL NETWORKS,22(5),714-726.
MLA Cheng, Long,et al."Recurrent Neural Network for Non-Smooth Convex Optimization Problems With Application to the Identification of Genetic Regulatory Networks".IEEE TRANSACTIONS ON NEURAL NETWORKS 22.5(2011):714-726.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。