中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Data-Driven Neuro-Optimal Temperature Control of Water-Gas Shift Reaction Using Stable Iterative Adaptive Dynamic Programming

文献类型:期刊论文

作者Wei, Qinglai; Liu, Derong
刊名IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS
出版日期2014-11-01
卷号61期号:11页码:6399-6408
关键词Adaptive critic designs adaptive dynamic programming (ADP) approximate dynamic programming approximation errors data-driven control neural networks (NNs) optimal control reinforcement learning water-gas shift (WGS)
英文摘要In this paper, a novel data-driven stable iterative adaptive dynamic programming (ADP) algorithm is developed to solve optimal temperature control problems for water-gas shift (WGS) reaction systems. According to the system data, neural networks (NNs) are used to construct the dynamics of the WGS system and solve the reference control, respectively, where the mathematical model of the WGS system is unnecessary. Considering the reconstruction errors of NNs and the disturbances of the system and control input, a new stable iterative ADP algorithm is developed to obtain the optimal control law. The convergence property is developed to guarantee that the iterative performance index function converges to a finite neighborhood of the optimal performance index function. The stability property is developed to guarantee that each of the iterative control laws can make the tracking error uniformly ultimately bounded (UUB). NNs are developed to implement the stable iterative ADP algorithm. Finally, numerical results are given to illustrate the effectiveness of the developed method.
WOS标题词Science & Technology ; Technology
类目[WOS]Automation & Control Systems ; Engineering, Electrical & Electronic ; Instruments & Instrumentation
研究领域[WOS]Automation & Control Systems ; Engineering ; Instruments & Instrumentation
关键词[WOS]TIME NONLINEAR-SYSTEMS ; CONTROL SCHEME ; FEEDBACK-CONTROL ; LEARNING CONTROL ; DESIGN ; ALGORITHM ; REINFORCEMENT ; CONVERTERS ; MODEL ; STATE
收录类别SCI
语种英语
WOS记录号WOS:000337123000062
源URL[http://ir.ia.ac.cn/handle/173211/3836]  
专题自动化研究所_复杂系统管理与控制国家重点实验室_智能化团队
作者单位Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Wei, Qinglai,Liu, Derong. Data-Driven Neuro-Optimal Temperature Control of Water-Gas Shift Reaction Using Stable Iterative Adaptive Dynamic Programming[J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS,2014,61(11):6399-6408.
APA Wei, Qinglai,&Liu, Derong.(2014).Data-Driven Neuro-Optimal Temperature Control of Water-Gas Shift Reaction Using Stable Iterative Adaptive Dynamic Programming.IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS,61(11),6399-6408.
MLA Wei, Qinglai,et al."Data-Driven Neuro-Optimal Temperature Control of Water-Gas Shift Reaction Using Stable Iterative Adaptive Dynamic Programming".IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 61.11(2014):6399-6408.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。