Incremental Tensor Subspace Learning and Its Applications to Foreground Segmentation and Tracking
文献类型:期刊论文
作者 | Hu, Weiming1![]() ![]() |
刊名 | INTERNATIONAL JOURNAL OF COMPUTER VISION
![]() |
出版日期 | 2011-02-01 |
卷号 | 91期号:3页码:303-327 |
关键词 | Incremental learning Tensor subspace Foreground segmentation Tracking |
英文摘要 | Appearance modeling is very important for background modeling and object tracking. Subspace learning-based algorithms have been used to model the appearances of objects or scenes. Current vector subspace-based algorithms cannot effectively represent spatial correlations between pixel values. Current tensor subspace-based algorithms construct an offline representation of image ensembles, and current online tensor subspace learning algorithms cannot be applied to background modeling and object tracking. In this paper, we propose an online tensor subspace learning algorithm which models appearance changes by incrementally learning a tensor subspace representation through adaptively updating the sample mean and an eigenbasis for each unfolding matrix of the tensor. The proposed incremental tensor subspace learning algorithm is applied to foreground segmentation and object tracking for grayscale and color image sequences. The new background models capture the intrinsic spatiotemporal characteristics of scenes. The new tracking algorithm captures the appearance characteristics of an object during tracking and uses a particle filter to estimate the optimal object state. Experimental evaluations against state-of-the-art algorithms demonstrate the promise and effectiveness of the proposed incremental tensor subspace learning algorithm, and its applications to foreground segmentation and object tracking. |
WOS标题词 | Science & Technology ; Technology |
类目[WOS] | Computer Science, Artificial Intelligence |
研究领域[WOS] | Computer Science |
关键词[WOS] | ROBUST VISUAL TRACKING ; SHADOW SEGMENTATION ; APPEARANCE MODELS ; REPRESENTATION ; SURVEILLANCE ; RECOGNITION ; PEOPLE ; OBJECT ; CUES |
收录类别 | SCI |
语种 | 英语 |
WOS记录号 | WOS:000286610300005 |
源URL | [http://ir.ia.ac.cn/handle/173211/3248] ![]() |
专题 | 自动化研究所_模式识别国家重点实验室_视频内容安全团队 |
作者单位 | 1.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China 2.Wenzhou Univ, Coll Math & Informat Sci, Wenzhou 325000, Zhejiang, Peoples R China 3.Univ London Birkbeck Coll, Dept Comp Sci & Informat Syst, London WC1E 7HX, England 4.SUNY Binghamton, Binghamton, NY 13902 USA |
推荐引用方式 GB/T 7714 | Hu, Weiming,Li, Xi,Zhang, Xiaoqin,et al. Incremental Tensor Subspace Learning and Its Applications to Foreground Segmentation and Tracking[J]. INTERNATIONAL JOURNAL OF COMPUTER VISION,2011,91(3):303-327. |
APA | Hu, Weiming,Li, Xi,Zhang, Xiaoqin,Shi, Xinchu,Maybank, Stephen,&Zhang, Zhongfei.(2011).Incremental Tensor Subspace Learning and Its Applications to Foreground Segmentation and Tracking.INTERNATIONAL JOURNAL OF COMPUTER VISION,91(3),303-327. |
MLA | Hu, Weiming,et al."Incremental Tensor Subspace Learning and Its Applications to Foreground Segmentation and Tracking".INTERNATIONAL JOURNAL OF COMPUTER VISION 91.3(2011):303-327. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。