中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
地理科学与资源研究... [17]
青岛生物能源与过程研... [2]
动物研究所 [2]
上海药物研究所 [1]
大连化学物理研究所 [1]
微电子研究所 [1]
更多
采集方式
OAI收割 [25]
内容类型
期刊论文 [21]
专利 [3]
CNKI期刊论文 [1]
发表日期
2024 [4]
2023 [3]
2022 [1]
2021 [5]
2020 [2]
2019 [4]
更多
学科主题
筛选
浏览/检索结果:
共25条,第1-10条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
An unmanned aerial system benchmark object detection dataset for deep learning in outfall surveys
期刊论文
OAI收割
INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2024, 卷号: 17, 期号: 1, 页码: 2390443
作者:
Wu, Chengbin
;
Huang, Yaohuan
;
Yang, Haijun
;
Yao, Ling
;
Liu, Yesen
  |  
收藏
  |  
浏览/下载:7/0
  |  
提交时间:2024/09/19
Deep learning
object detection dataset
outfalls
UAS imagery
computer vision
Advancing mangrove species mapping: An innovative approach using Google Earth images and a U-shaped network for individual-level Sonneratia apetala detection
期刊论文
OAI收割
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2024, 卷号: 218, 页码: 276-293
作者:
Zhao, Chuanpeng
;
Li, Yubin
;
Jia, Mingming
;
Wu, Chengbin
;
Zhang, Rong
  |  
收藏
  |  
浏览/下载:5/0
  |  
提交时间:2025/02/06
Sonneratia apetala
Mangrove species
U-shaped networks
Submeter resolution
Google Earth images
An Annual “Urban Core-Suburban-Rural” Triad Structure Dataset for China From 1992 to 2021
期刊论文
OAI收割
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 卷号: 17, 页码: 2037-2051
作者:
Xiong, Biao
;
Huang, Yaohuan
;
Chen, Mingxing
;
Wu, Chengbin
;
Ren, Hongyan
  |  
收藏
  |  
浏览/下载:39/0
  |  
提交时间:2024/02/05
Urban areas
Carbon dioxide
Remote sensing
Equator
Statistics
Spatial resolution
Sociology
China
dataset
nighttime light (NTL)
urban core-suburban-rural (USR)
urbanization
Geographical features and development models of estuarine cities
期刊论文
OAI收割
JOURNAL OF GEOGRAPHICAL SCIENCES, 2024, 卷号: 34, 期号: 1, 页码: 25-40
作者:
Chen, Mingxing
;
Xian, Yue
;
Huang, Yaohuan
;
Sun, Zhigang
;
Wu, Chengbin
  |  
收藏
  |  
浏览/下载:33/0
  |  
提交时间:2024/02/05
estuarine cities
great rivers
development models
sustainability
physical geography
socioeconomy
一种基于无人机数据的极灾区识别方法、装置及设备
专利
OAI收割
专利号: CN202310180269.1, 申请日期: 2023-05-12, 公开日期: 2023-05-12
作者:
黄耀欢
;
杨洁
;
伍程斌
;
谭翔
  |  
收藏
  |  
浏览/下载:11/0
  |  
提交时间:2023/07/18
Evaluation of Deep Learning Benchmarks in Retrieving Outfalls Into Rivers With UAS Images
期刊论文
OAI收割
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 卷号: 61, 页码: 4703912
作者:
Huang, Yaohuan
;
Wu, Chengbin
  |  
收藏
  |  
浏览/下载:7/0
  |  
提交时间:2023/09/07
Benchmark
deep learning
model performance
optimization
outfall retrieval
Evaluation of Deep Learning Benchmarks in Retrieving Outfalls Into Rivers With UAS Images (vol 61, 4703912, 2023)
期刊论文
OAI收割
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 卷号: 61, 页码: 1
作者:
Huang, Yaohuan
;
Wu, Chengbin
  |  
收藏
  |  
浏览/下载:10/0
  |  
提交时间:2024/04/01
入河排污口遥感排查进展评述
CNKI期刊论文
OAI收割
2022
作者:
黄耀欢
;
熊标
;
杨海军
;
伍程斌
;
朱海涛
  |  
收藏
  |  
浏览/下载:22/0
  |  
提交时间:2022/09/30
入河排污口
排查
遥感
无人机
目标检测
An Improved Deep Learning Approach for Retrieving Outfalls Into Rivers From UAS Imagery
期刊论文
OAI收割
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 页码: 14
作者:
Huang, Yaohuan
  |  
收藏
  |  
浏览/下载:29/0
  |  
提交时间:2022/09/21
Rivers
Visualization
Remote sensing
Manuals
Inspection
Water resources
Task analysis
Deep learning
digital surface model (DSM)
faster region convolutional neural network (R-CNN)
outfalls into river
unmanned aircraft systems (UAS) imagery
An Improved Deep Learning Approach for Retrieving Outfalls Into Rivers From UAS Imagery
期刊论文
OAI收割
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 页码: 14
作者:
Huang, Yaohuan
;
Wu, Chengbin
;
Yang, Haijun
;
Zhu, Haitao
;
Chen, Mingxing
  |  
收藏
  |  
浏览/下载:29/0
  |  
提交时间:2022/09/21
Rivers
Visualization
Remote sensing
Manuals
Inspection
Water resources
Task analysis
Deep learning
digital surface model (DSM)
faster region convolutional neural network (R-CNN)
outfalls into river
unmanned aircraft systems (UAS) imagery