中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
地理科学与资源研究... [25]
昆明植物研究所 [22]
化学研究所 [20]
上海药物研究所 [20]
高能物理研究所 [20]
近代物理研究所 [20]
更多
采集方式
OAI收割 [341]
iSwitch采集 [15]
内容类型
期刊论文 [348]
会议论文 [7]
专利 [1]
发表日期
2024 [10]
2023 [15]
2022 [19]
2021 [48]
2020 [23]
2019 [57]
更多
学科主题
天文学 [7]
天文学::星系与宇宙... [6]
Chemistry [5]
Pharmacolo... [4]
天文学::天体物理学 [4]
天文学::天体物理学... [4]
更多
筛选
浏览/检索结果:
共356条,第1-10条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Mapping global yields of four major crops at 5-minute resolution from 1982 to 2015 using multi-source data and machine learning
期刊论文
OAI收割
SCIENTIFIC DATA, 2025, 卷号: 12, 期号: 1, 页码: 357
作者:
Cao, Juan
;
Zhang, Zhao
;
Luo, Xiangzhong
;
Luo, Yuchuan
;
Xu, Jialu
  |  
收藏
  |  
浏览/下载:6/0
  |  
提交时间:2025/04/21
A new titanosaurian sauropod,
Gandititan cavocaudatus
gen. et sp. nov., from the Late Cretaceous of southern China
期刊论文
OAI收割
JOURNAL OF SYSTEMATIC PALAEONTOLOGY, 2024, 卷号: 22, 期号: 1, 页码: 22
作者:
Han, Fenglu
;
Yang, Ling
;
Lou, Fasheng
;
Sullivan, Corwin
;
Xu, Xing
  |  
收藏
  |  
浏览/下载:70/0
  |  
提交时间:2024/03/27
Titanosauria
Sauropoda
Upper Cretaceous
southern China
PM
2.5
-mediated cardiovascular disease in aging: Cardiometabolic risks, molecular mechanisms and potential interventions
期刊论文
OAI收割
SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 卷号: 954, 页码: 22
作者:
Chanda, Francis
;
Lin, Kai-xuan
;
Chaurembo, Abdallah Iddy
;
Huang, Jian-yuan
;
Zhang, Hui-juan
  |  
收藏
  |  
浏览/下载:10/0
  |  
提交时间:2024/11/05
PM2.5
Cardiovascular disease
Cardiometabolic risk
Older adults
Inflammation
Oxidative stress
Oxidative stress
Millennial-scale sedimentary evolution of carbonate platforms during the Permian-Triassic boundary hyperthermal event
期刊论文
OAI收割
PALAEOGEOGRAPHY PALAEOCLIMATOLOGY PALAEOECOLOGY, 2024, 卷号: 654, 页码: 17
作者:
He, Jiawei
;
Hu, Xiumian
;
Li, Juan
;
Kemp, David B.
;
Hou, Mingcai
  |  
收藏
  |  
浏览/下载:5/0
  |  
提交时间:2025/03/28
Permian-Triassic boundary
Carbon isotope
Carbonate microfacies
Xenoconformity
Carbonate platform
Tailoring wheat agronomic management to ENSO phases to manage climate variability in Australia at 5-minute resolution
期刊论文
OAI收割
AGRICULTURAL AND FOREST METEOROLOGY, 2024, 卷号: 356, 页码: 110168
作者:
Cao, Juan
;
Zhang, Zhao
;
Xie, Jun
;
Luo, Yuchuan
;
Han, Jichong
  |  
收藏
  |  
浏览/下载:12/0
  |  
提交时间:2024/09/19
Climate variability
Crop model
Crop yield
ENSO phase
Management practice
First Very Long Baseline Interferometry Detections at 870 μm
期刊论文
OAI收割
The Astronomical Journal, 2024, 卷号: 168, 期号: 3
作者:
Raymond,Alexander W.
;
Doeleman,Sheperd S.
;
Asada,Keiichi
;
Blackburn,Lindy
;
Bower,Geoffrey C.
  |  
收藏
  |  
浏览/下载:24/0
  |  
提交时间:2024/09/30
Transcriptomic decoding of regional cortical vulnerability to major depressive disorder
期刊论文
OAI收割
COMMUNICATIONS BIOLOGY, 2024, 卷号: 7, 期号: 1, 页码: 12
作者:
Zhu, Jiajia
;
Chen, Xiao
;
Lu, Bin
;
Li, Xue-Ying
;
Wang, Zi-Han
  |  
收藏
  |  
浏览/下载:14/0
  |  
提交时间:2024/09/10
Threat of low-frequency high-intensity floods to global cropland and crop yields
期刊论文
OAI收割
NATURE SUSTAINABILITY, 2024, 卷号: N/A
作者:
Han, Jichong
;
Zhang, Zhao
;
Xu, Jialu
;
Chen, Yi
;
Jaegermeyr, Jonas
  |  
收藏
  |  
浏览/下载:18/0
  |  
提交时间:2024/07/12
Mitofilin in cardiovascular diseases: Insights into the pathogenesis and potential pharmacological interventions
期刊论文
OAI收割
PHARMACOLOGICAL RESEARCH, 2024, 卷号: 203, 页码: 20
作者:
Chaurembo, Abdallah Iddy
;
Xing, Na
;
Chanda, Francis
;
Li, Yuan
;
Zhang, Hui-juan
  |  
收藏
  |  
浏览/下载:22/0
  |  
提交时间:2024/06/27
Mitofilin
Cristae junction
Mitochondrial dysfunction
Cardiovascular diseases
Mitochondrial-targeted therapy
Integrating data assimilation, crop model, and machine learning for winter wheat yield forecasting in the North China Plain
期刊论文
OAI收割
AGRICULTURAL AND FOREST METEOROLOGY, 2024, 卷号: 347, 页码: 14
作者:
Zhuang, Huimin
;
Zhang, Zhao
;
Cheng, Fei
;
Han, Jichong
;
Luo, Yuchuan
  |  
收藏
  |  
浏览/下载:20/0
  |  
提交时间:2024/04/30
Crop modelling
Data assimilation
Early warning system
Extreme climate
Machine learning