中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
自动化研究所 [9]
工程热物理研究所 [2]
上海药物研究所 [1]
采集方式
OAI收割 [12]
内容类型
期刊论文 [9]
会议论文 [3]
发表日期
2023 [2]
2022 [2]
2021 [1]
2019 [2]
2018 [2]
2017 [1]
更多
学科主题
Presented ... [1]
Presented ... [1]
筛选
浏览/检索结果:
共12条,第1-10条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
ABCP: Automatic Blockwise and Channelwise Network Pruning via Joint Search
期刊论文
OAI收割
IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2023, 卷号: 15, 期号: 3, 页码: 1560-1573
作者:
Li, Jiaqi
;
Li, Haoran
;
Chen, Yaran
;
Ding, Zixiang
;
Li, Nannan
  |  
收藏
  |  
浏览/下载:18/0
  |  
提交时间:2023/12/21
Joint search
model compression
pruning
reinforcement learning
BViT: Broad Attention-Based Vision Transformer
期刊论文
OAI收割
IEEE Transactions on Neural Networks and Learning Systems, 2023, 页码: 1 - 12
作者:
Nannan Li
;
Yaran Chen
;
Weifan Li
;
Zixiang Ding
;
Dongbin Zhao
  |  
收藏
  |  
浏览/下载:23/0
  |  
提交时间:2023/06/27
Broad attention
broad connection
image classification
parameter-free attention
vision transformer
Stacked BNAS: Rethinking Broad Convolutional Neural Network for Neural Architecture Search
期刊论文
OAI收割
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 卷号: 0, 期号: 0, 页码: 0
作者:
Zixiang, Ding
;
Yaran, Chen
;
Nannan, Li
;
Dongbin, Zhao
;
C.L.Philip Chen,
  |  
收藏
  |  
浏览/下载:27/0
  |  
提交时间:2022/01/07
broad neural architecture search, stacked broad convolutional neural network, knowledge embedding search, image classification.
BNAS-v2: Memory-efficient and Performance-collapse-prevented Broad Neural Architecture Search
期刊论文
OAI收割
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, 2022, 卷号: 0, 期号: 0, 页码: 0
作者:
Zixiang, Ding
;
Yaran, Chen
;
Nannan, Li
;
Dongbin, Zhao
  |  
收藏
  |  
浏览/下载:21/0
  |  
提交时间:2022/01/07
Broad neural architecture search (BNAS), continuous relaxation, confident learning rate, partial channel connections, image classification.
Heuristic rank selection with progressively searching tensor ring network
期刊论文
OAI收割
COMPLEX & INTELLIGENT SYSTEMS, 2021, 页码: 15
作者:
Li, Nannan
;
Pan, Yu
;
Chen, Yaran
;
Ding, Zixiang
;
Zhao, Dongbin
  |  
收藏
  |  
浏览/下载:28/0
  |  
提交时间:2021/04/27
Tensor ring networks
Rank selection
Progressively search
Image classification
Multi-Objective Neural Architecture Search for Light-Weight Model
会议论文
OAI收割
Hangzhou, China, 22-24 November 2019
作者:
Nannan Li
;
Yaran Chen
;
Zixiang Ding
;
Dongbin Zhao
;
Zhonghua Pang
  |  
收藏
  |  
浏览/下载:9/0
  |  
提交时间:2023/06/27
Neural architecture search
light-weight
multi-objective
reinforcement learning
image classification
Synchrotron radiation micro-tomography for high-resolution neurovascular network morphology investigation
期刊论文
OAI收割
JOURNAL OF SYNCHROTRON RADIATION, 2019, 卷号: 26, 页码: 607-618
作者:
Cao, Yong
;
Zhang, Mengqi
;
Ding, Hui
;
Chen, Zhuohui
;
Tang, Bin
  |  
收藏
  |  
浏览/下载:42/0
  |  
提交时间:2020/07/01
high-resolution
imaging
neurovascular network
3D
Data-driven design of the extended fuzzy neural network having linguistic outputs
期刊论文
OAI收割
JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2018, 卷号: 34, 期号: 1, 页码: 349-360
作者:
Li, Chengdong
;
Ding, Zixiang
;
Qian, Dianwei
;
Lv, Yisheng
  |  
收藏
  |  
浏览/下载:34/0
  |  
提交时间:2018/10/10
Data-driven Method
Fuzzy Neural Network
Multi-objective Optimization
Structure Reduction
Deep Belief Network Based Hybrid Model for Building Energy Consumption Prediction
期刊论文
OAI收割
ENERGIES, 2018, 卷号: 11, 期号: 1
作者:
Li, Chengdong
;
Ding, Zixiang
;
Yi, Jianqiang
;
Lv, Yisheng
;
Zhang, Guiqing
  |  
收藏
  |  
浏览/下载:39/0
  |  
提交时间:2018/10/10
Building Energy Consumption Prediction
Deep Belief Network
Contrastive Divergence Algorithm
Least Squares Learning
Energy-consuming Pattern
Building Energy Consumption Prediction: An Extreme Deep Learning Approach
期刊论文
OAI收割
ENERGIES, 2017, 卷号: 10, 期号: 10, 页码: 1-20
作者:
Li, Chengdong
;
Ding, Zixiang
;
Zhao, Dongbin
;
Yi, Jianqiang
;
Zhang, Guiqing
  |  
收藏
  |  
浏览/下载:44/0
  |  
提交时间:2017/12/30
Building Energy Consumption
Deep Learning
Stacked Autoencoders
Extreme Learning Machine