中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
自动化研究所 [5]
长春光学精密机械与物... [4]
地球环境研究所 [2]
地质与地球物理研究所 [1]
西安光学精密机械研究... [1]
采集方式
OAI收割 [13]
内容类型
期刊论文 [7]
会议论文 [4]
学位论文 [2]
发表日期
2024 [1]
2018 [2]
2014 [1]
2012 [3]
2009 [1]
2008 [3]
更多
学科主题
筛选
浏览/检索结果:
共13条,第1-10条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
CFNet: Conditional filter learning with dynamic noise estimation for real image denoising
期刊论文
OAI收割
KNOWLEDGE-BASED SYSTEMS, 2024, 卷号: 284, 页码: 12
作者:
Zuo, Yifan
;
Yao, Wenhao
;
Zeng, Yifeng
;
Xie, Jiacheng
;
Fang, Yuming
  |  
收藏
  |  
浏览/下载:50/0
  |  
提交时间:2024/03/26
Image denoising
Noise estimation
Conditional filter
Affine transform
Hyperspectral image classification based on joint spectrumof spatial space and spectral space
期刊论文
OAI收割
Multimed Tools Appl, 2018, 期号: 2018
作者:
Hu, BL(Hu, Bingliang)
;
Zheng, X(Zheng, Xi)
;
Zhang, Xiaorong
;
Pan, ZB(Pan, Zhibin)
;
Zhang, XR(Zhang, Xiaorong)
  |  
收藏
  |  
浏览/下载:44/0
  |  
提交时间:2018/09/29
Classification
Hyperspectral Imagery
Spectral-spatial Fusion
Affine Transform
Feature Extraction
Probabilistic Fusion
Hyperspectral image classification based on joint spectrum of spatial space and spectral space
期刊论文
OAI收割
Multimedia Tools and Applications, 2018, 卷号: 77, 期号: 2018, 页码: 1-19
作者:
Zhang, XR(Zhang, Xiaorong)
;
Pan, ZB(Pan, Zhibin)
;
Lu, XQ(Lu, Xiaoqiang)
;
Hu, BL(Hu,Bingliang)
;
Zheng, X(Zheng, Xi)
  |  
收藏
  |  
浏览/下载:51/0
  |  
提交时间:2018/09/29
Classification
Hyperspectral Imagery
Spectral-spatial Fusion
Affine Transform
Feature Extraction
Probabilistic Fusion
Corner detection using Gabor filters
期刊论文
OAI收割
iet image processing, 2014, 卷号: 8, 期号: 11, 页码: 639-646
作者:
Zhang, Wei-Chuan
;
Wang, Fu-Ping
;
Zhu, Lei
;
Zhou, Zuo-Feng
收藏
  |  
浏览/下载:51/0
  |  
提交时间:2015/03/19
edge detection
Gabor filters
grey systems
affine transforms
Gabor filter
contour-based corner detection
magnitude response
edge contour shape analysis
local curvature maxima points
planar curve
corresponding grey-variation information
Canny edge detector
normalised magnitude response
magnitude response threshold
angle threshold
detection accuracy
localisation accuracy
afflne transform
noise-robustness
A fast target recognition algorithm based on MSA and MSR (EI CONFERENCE)
会议论文
OAI收割
2012 International Conference on Industrial Control and Electronics Engineering, ICICEE 2012, August 23, 2012 - August 25, 2012, Xi'an, China
作者:
Wang Y.
;
Liu G.
;
Wang Y.
;
Wang Y.
;
Wang Y.
收藏
  |  
浏览/下载:28/0
  |  
提交时间:2013/03/25
This paper presents a new fast target recognition algorithm
the proposed method is based on Multi-scale Auto convolution(MSA) and Multi-scale Retinex(MSR). As shown by the comparison with original MSA
it appears that this new technique solves the problem that MSA algorithm is sensitive to illumination and the computational load is significantly reduced to 1/8th of that of the original MSA algorithm
it is also robust to affine transform
light projective transform
noise
thin fog
occlusion and illumination change. the performed experiments show that it has fast searching speed
and can accurately recognize and locate target in real scenes. 2012 IEEE.
Image registration based on Mexican-hat wavelets and pseudo-Zernike moments (EI CONFERENCE)
会议论文
OAI收割
2012 World Automation Congress, WAC 2012, June 24, 2012 - June 28, 2012, Puerto Vallarta, Mexico
作者:
Liu Y.
;
Liu Y.
;
Liu Y.
收藏
  |  
浏览/下载:36/0
  |  
提交时间:2013/03/25
Image registration is a key technique in pattern recognition and image processing
and it is widely used in many application areas such as computer vision
remote sensing
image fusion and object tracking. A method for image registration combining Mexican-hat wavelets and pseudo-Zernike moments is proposed. Firstly
feature points are extracted using scale-interaction Mexican-hat wavelets in the reference image and sensed image respectively. Then
pseudo-Zernike moments are used to match them and classical RANSAC used to eliminate the wrong matches. And then
the well match points are used to estimate the best affine transform parameters by least squares minimization. At last
the sensed image is transformed and resampled to accomplish the image registration. The experiments indicate that the proposed algorithm extracts feature points and matches them exactly and eliminates wrong matched points effectively and achieves nice registration results. 2012 TSI Press.
Blind super-resolution reconstruction algorithm under affine motion model
期刊论文
OAI收割
Pattem Recognition and Aitificial Intelligence,, 2012, 卷号: 25(4), 期号: 2012年04期, 页码: pp 648-655 (EI)
作者:
Zhang, Xue-Song
;
Jiang, Jing
;
Peng, Si-Long
  |  
收藏
  |  
浏览/下载:22/0
  |  
提交时间:2017/01/13
Affine Transform / blind Super-resolution (Bsr / motion Estimation / blur
图像的匹配扩散研究
学位论文
OAI收割
工学硕士, 中国科学院自动化研究所: 中国科学院研究生院, 2009
许振辉
收藏
  |  
浏览/下载:34/0
  |  
提交时间:2015/09/02
准稠密匹配
扩散
鱼眼图像
仿射变换
邻域传递
quasi-dense matching
propagation
fish-eye image
affine transform
neighborhood-transfer
Seismic data reconstruction with fractal interpolation
期刊论文
OAI收割
CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2008, 卷号: 51, 期号: 4, 页码: 1196-1201
作者:
Li Xin-Fu
;
Li Xiao-Fan
  |  
收藏
  |  
浏览/下载:12/0
  |  
提交时间:2018/09/26
iterated function systems (IFS)
affine transform
explicit fractal interpolation
vertical scaling factors
seismic data reconstruction
Mean shift tracking combining SIFT (EI CONFERENCE)
会议论文
OAI收割
2008 9th International Conference on Signal Processing, ICSP 2008, October 26, 2008 - October 29, 2008, Beijing, China
作者:
Xue C.
收藏
  |  
浏览/下载:63/0
  |  
提交时间:2013/03/25
A novel visual tracking algorithm to cope with occlusion and scale variation is proposed. This method combines mean shift and SIFT algorithm to track object. SIFT algorithm is invariant to rotation
translation and scale variation. But it is a timeconsuming algorithm. The wasting time is related to image size. So the proposed algorithm first adopts mean shift to initially locate object position
then SIFT operator is used to detect features in object area and model area
lastly
the proposed method matches features in these two areas and calculates the relationship between them using affine transform. According to affine transform parameters
the state of object can be adjusted in time. In order to reduce process time
an improved feature matching algorithm is proposed in this paper. Experiments show that the proposed algorithm deals with occlusion successfully and can adjust object size in time. 2008 IEEE.