中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
机构
采集方式
内容类型
发表日期
学科主题
筛选

浏览/检索结果: 共13条,第1-10条 帮助

条数/页: 排序方式:
CFNet: Conditional filter learning with dynamic noise estimation for real image denoising 期刊论文  OAI收割
KNOWLEDGE-BASED SYSTEMS, 2024, 卷号: 284, 页码: 12
作者:  
Zuo, Yifan;  Yao, Wenhao;  Zeng, Yifeng;  Xie, Jiacheng;  Fang, Yuming
  |  收藏  |  浏览/下载:50/0  |  提交时间:2024/03/26
Hyperspectral image classification based on joint spectrumof spatial space and spectral space 期刊论文  OAI收割
Multimed Tools Appl, 2018, 期号: 2018
作者:  
Hu, BL(Hu, Bingliang);  Zheng, X(Zheng, Xi);  Zhang, Xiaorong;  Pan, ZB(Pan, Zhibin);  Zhang, XR(Zhang, Xiaorong)
  |  收藏  |  浏览/下载:44/0  |  提交时间:2018/09/29
Hyperspectral image classification based on joint spectrum of spatial space and spectral space 期刊论文  OAI收割
Multimedia Tools and Applications, 2018, 卷号: 77, 期号: 2018, 页码: 1-19
作者:  
Zhang, XR(Zhang, Xiaorong);  Pan, ZB(Pan, Zhibin);  Lu, XQ(Lu, Xiaoqiang);  Hu, BL(Hu,Bingliang);  Zheng, X(Zheng, Xi)
  |  收藏  |  浏览/下载:51/0  |  提交时间:2018/09/29
Corner detection using Gabor filters 期刊论文  OAI收割
iet image processing, 2014, 卷号: 8, 期号: 11, 页码: 639-646
作者:  
Zhang, Wei-Chuan;  Wang, Fu-Ping;  Zhu, Lei;  Zhou, Zuo-Feng
收藏  |  浏览/下载:51/0  |  提交时间:2015/03/19
A fast target recognition algorithm based on MSA and MSR (EI CONFERENCE) 会议论文  OAI收割
2012 International Conference on Industrial Control and Electronics Engineering, ICICEE 2012, August 23, 2012 - August 25, 2012, Xi'an, China
作者:  
Wang Y.;  Liu G.;  Wang Y.;  Wang Y.;  Wang Y.
收藏  |  浏览/下载:28/0  |  提交时间:2013/03/25
Image registration based on Mexican-hat wavelets and pseudo-Zernike moments (EI CONFERENCE) 会议论文  OAI收割
2012 World Automation Congress, WAC 2012, June 24, 2012 - June 28, 2012, Puerto Vallarta, Mexico
作者:  
Liu Y.;  Liu Y.;  Liu Y.
收藏  |  浏览/下载:36/0  |  提交时间:2013/03/25
Image registration is a key technique in pattern recognition and image processing  and it is widely used in many application areas such as computer vision  remote sensing  image fusion and object tracking. A method for image registration combining Mexican-hat wavelets and pseudo-Zernike moments is proposed. Firstly  feature points are extracted using scale-interaction Mexican-hat wavelets in the reference image and sensed image respectively. Then  pseudo-Zernike moments are used to match them and classical RANSAC used to eliminate the wrong matches. And then  the well match points are used to estimate the best affine transform parameters by least squares minimization. At last  the sensed image is transformed and resampled to accomplish the image registration. The experiments indicate that the proposed algorithm extracts feature points and matches them exactly and eliminates wrong matched points effectively and achieves nice registration results. 2012 TSI Press.  
Blind super-resolution reconstruction algorithm under affine motion model 期刊论文  OAI收割
Pattem Recognition and Aitificial Intelligence,, 2012, 卷号: 25(4), 期号: 2012年04期, 页码: pp 648-655 (EI)
作者:  
Zhang, Xue-Song;  Jiang, Jing;  Peng, Si-Long
  |  收藏  |  浏览/下载:22/0  |  提交时间:2017/01/13
图像的匹配扩散研究 学位论文  OAI收割
工学硕士, 中国科学院自动化研究所: 中国科学院研究生院, 2009
许振辉
收藏  |  浏览/下载:34/0  |  提交时间:2015/09/02
Seismic data reconstruction with fractal interpolation 期刊论文  OAI收割
CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2008, 卷号: 51, 期号: 4, 页码: 1196-1201
作者:  
Li Xin-Fu;  Li Xiao-Fan
  |  收藏  |  浏览/下载:12/0  |  提交时间:2018/09/26
Mean shift tracking combining SIFT (EI CONFERENCE) 会议论文  OAI收割
2008 9th International Conference on Signal Processing, ICSP 2008, October 26, 2008 - October 29, 2008, Beijing, China
作者:  
Xue C.
收藏  |  浏览/下载:63/0  |  提交时间:2013/03/25
A novel visual tracking algorithm to cope with occlusion and scale variation is proposed. This method combines mean shift and SIFT algorithm to track object. SIFT algorithm is invariant to rotation  translation and scale variation. But it is a timeconsuming algorithm. The wasting time is related to image size. So the proposed algorithm first adopts mean shift to initially locate object position  then SIFT operator is used to detect features in object area and model area  lastly  the proposed method matches features in these two areas and calculates the relationship between them using affine transform. According to affine transform parameters  the state of object can be adjusted in time. In order to reduce process time  an improved feature matching algorithm is proposed in this paper. Experiments show that the proposed algorithm deals with occlusion successfully and can adjust object size in time. 2008 IEEE.