中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
自动化研究所 [7]
地理科学与资源研究所 [1]
长春光学精密机械与物... [1]
水生生物研究所 [1]
烟台海岸带研究所 [1]
采集方式
OAI收割 [11]
内容类型
学位论文 [5]
期刊论文 [4]
会议论文 [2]
发表日期
2024 [1]
2021 [1]
2017 [1]
2011 [1]
2008 [1]
2006 [5]
更多
学科主题
筛选
浏览/检索结果:
共11条,第1-10条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Using Automated Machine Learning for Spatial Prediction-The Heshan Soil Subgroups Case Study
期刊论文
OAI收割
LAND, 2024, 卷号: 13, 期号: 4, 页码: 12
作者:
Liang, Peng
;
Qin, Cheng-Zhi
;
Zhu, A-Xing
  |  
收藏
  |  
浏览/下载:11/0
  |  
提交时间:2024/05/27
automated method selection
digital soil mapping
soil subgroups
classification methods
AI4AD: Artificial intelligence analysis for Alzheimer's disease classification based on a multisite DTI database
期刊论文
OAI收割
Brain Disorders, 2021, 卷号: 1, 期号: 1, 页码: 10005
作者:
Qu, Yida
;
Wang, Pan
;
Liu, Bing
;
Song, Chengyuan
;
Wang, Dawei
  |  
收藏
  |  
浏览/下载:36/0
  |  
提交时间:2022/06/16
Alzheimer's disease (AD)
Diffusion tensor imaging (DTI)
Multisite
Automated fiber quantification (AFQ)
Classification
Acoustic mapping and classification of benthic habitat using unsupervised learning in artificial reef water
期刊论文
OAI收割
ESTUARINE COASTAL AND SHELF SCIENCE, 2017, 卷号: 185, 页码: 11-21
作者:
Li, Dong
;
Tang, Cheng
;
Xia, Chunlei
;
Zhang, Hua
;
Tang, C
收藏
  |  
浏览/下载:38/0
  |  
提交时间:2017/04/06
Artificial reef
Acoustic mapping
Automated classification
Multibeam echosounder
Bayesian model for semi-automated zooplankton classification with predictive confidence and rapid category aggregation
期刊论文
OAI收割
MARINE ECOLOGY PROGRESS SERIES, 2011, 卷号: 441, 页码: 185-196
作者:
Ye, Lin
;
Chang, Chun-Yi
;
Hsieh, Chih-hao
收藏
  |  
浏览/下载:25/0
  |  
提交时间:2017/02/27
Automated classification
Naive Bayesian classifier
Predictive confidence
Rapid category aggregation
Zooplankton community
ZooScan
View Independent Object Classification Based on Automated Ground Plane Rectification for Traffic Scene Surveillance
会议论文
OAI收割
France, 17th October 2008
作者:
Zhaoxiang Zhang
;
Min Li
;
Kaiqi Huang
;
Tieniu Tan
  |  
收藏
  |  
浏览/下载:14/0
  |  
提交时间:2016/12/30
Traffic Scene Surveillance
Object Feature
Automated Ground Plane Rectification
View Independent Object Classification
Online Learning Framework
恒星光谱的自动识别与分类方法研究
学位论文
OAI收割
工学博士, 中国科学院自动化研究所: 中国科学院研究生院, 2006
作者:
刘中田
收藏
  |  
浏览/下载:91/0
  |  
提交时间:2015/09/02
天体光谱
自动分类
红移测量
小波变换
离散傅里叶变换
卷积型小波包变换
多尺度特征匹配
Celestial object spectra
automated classification
redshifts measurement
wavelet transform
discrete fourier transform
convolution type of wavelet packet transform
multi-scaling feature matching
天体光谱自动处理及其软件系统实现
学位论文
OAI收割
工学博士, 中国科学院自动化研究所: 中国科学院研究生院, 2006
作者:
杨金福
收藏
  |  
浏览/下载:56/0
  |  
提交时间:2015/09/02
天体光谱
自动分类
覆盖算法
SVM
PCA
NMF
系统设计
系统实现
软件测试
Celestial object spectrum
automated classification
covering algorithm
support vector machine
principal component analysis
non-negative matrix factorization
system design
system implementation
software testing
几个学习算法及其在星系光谱分类中的应用
学位论文
OAI收割
工学博士, 中国科学院自动化研究所: 中国科学院研究生院, 2006
作者:
李乡儒
收藏
  |  
浏览/下载:50/0
  |  
提交时间:2015/09/02
活动星系核
类星体
光谱自动分类
预处理
特征提取
对数波长
流量标准化
均值漂移
相关向量机
相融性度量
active galactic nuclei(AGN)
quasar(quasi-stellar object ,QSO)
spectra automated classification
preprocessing
feature extraction
log-wavelength
flux standization
mean shift
relevance vector machine (RVM)
coherence measure
星系光谱的自动识别与分类技术研究
学位论文
OAI收割
工学博士, 中国科学院自动化研究所: 中国科学院研究生院, 2006
作者:
赵梅芳
收藏
  |  
浏览/下载:65/0
  |  
提交时间:2015/09/02
天体光谱
自动分类
径向基神经网络
动态衰减调节
Adaboost
特征融合
Celestial object spectra
automated classification
radial basis function neural network
dynamic decay adjustment
Adaboost
feature fusion
Intelligent MRTD testing for thermal imaging system using ANN (EI CONFERENCE)
会议论文
OAI收割
ICO20: Remote Sensing and Infrared Devices and Systems, August 21, 2005 - August 26, 2005, Changchun, China
Sun J.
;
Ma D.
收藏
  |  
浏览/下载:25/0
  |  
提交时间:2013/03/25
The Minimum Resolvable Temperature Difference (MRTD) is the most widely accepted figure for describing the performance of a thermal imaging system. Many models have been proposed to predict it. The MRTD testing is a psychophysical task
for which biases are unavoidable. It requires laboratory conditions such as normal air condition and a constant temperature. It also needs expensive measuring equipments and takes a considerable period of time. Especially when measuring imagers of the same type
the test is time consuming. So an automated and intelligent measurement method should be discussed. This paper adopts the concept of automated MRTD testing using boundary contour system and fuzzy ARTMAP
but uses different methods. It describes an Automated MRTD Testing procedure basing on Back-Propagation Network. Firstly
we use frame grabber to capture the 4-bar target image data. Then according to image gray scale
we segment the image to get 4-bar place and extract feature vector representing the image characteristic and human detection ability. These feature sets
along with known target visibility
are used to train the ANN (Artificial Neural Networks). Actually it is a nonlinear classification (of input dimensions) of the image series using ANN. Our task is to justify if image is resolvable or uncertainty. Then the trained ANN will emulate observer performance in determining MRTD. This method can reduce the uncertainties between observers and long time dependent factors by standardization. This paper will introduce the feature extraction algorithm
demonstrate the feasibility of the whole process and give the accuracy of MRTD measurement.