中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
机构
采集方式
内容类型
发表日期
学科主题
筛选

浏览/检索结果: 共11条,第1-10条 帮助

条数/页: 排序方式:
Using Automated Machine Learning for Spatial Prediction-The Heshan Soil Subgroups Case Study 期刊论文  OAI收割
LAND, 2024, 卷号: 13, 期号: 4, 页码: 12
作者:  
Liang, Peng;  Qin, Cheng-Zhi;  Zhu, A-Xing
  |  收藏  |  浏览/下载:11/0  |  提交时间:2024/05/27
AI4AD: Artificial intelligence analysis for Alzheimer's disease classification based on a multisite DTI database 期刊论文  OAI收割
Brain Disorders, 2021, 卷号: 1, 期号: 1, 页码: 10005
作者:  
Qu, Yida;  Wang, Pan;  Liu, Bing;  Song, Chengyuan;  Wang, Dawei
  |  收藏  |  浏览/下载:36/0  |  提交时间:2022/06/16
Acoustic mapping and classification of benthic habitat using unsupervised learning in artificial reef water 期刊论文  OAI收割
ESTUARINE COASTAL AND SHELF SCIENCE, 2017, 卷号: 185, 页码: 11-21
作者:  
Li, Dong;  Tang, Cheng;  Xia, Chunlei;  Zhang, Hua;  Tang, C
收藏  |  浏览/下载:38/0  |  提交时间:2017/04/06
Bayesian model for semi-automated zooplankton classification with predictive confidence and rapid category aggregation 期刊论文  OAI收割
MARINE ECOLOGY PROGRESS SERIES, 2011, 卷号: 441, 页码: 185-196
作者:  
Ye, Lin;  Chang, Chun-Yi;  Hsieh, Chih-hao
收藏  |  浏览/下载:25/0  |  提交时间:2017/02/27
View Independent Object Classification Based on Automated Ground Plane Rectification for Traffic Scene Surveillance 会议论文  OAI收割
France, 17th October 2008
作者:  
Zhaoxiang Zhang;  Min Li;  Kaiqi Huang;  Tieniu Tan
  |  收藏  |  浏览/下载:14/0  |  提交时间:2016/12/30
恒星光谱的自动识别与分类方法研究 学位论文  OAI收割
工学博士, 中国科学院自动化研究所: 中国科学院研究生院, 2006
作者:  
刘中田
收藏  |  浏览/下载:91/0  |  提交时间:2015/09/02
天体光谱自动处理及其软件系统实现 学位论文  OAI收割
工学博士, 中国科学院自动化研究所: 中国科学院研究生院, 2006
作者:  
杨金福
收藏  |  浏览/下载:56/0  |  提交时间:2015/09/02
几个学习算法及其在星系光谱分类中的应用 学位论文  OAI收割
工学博士, 中国科学院自动化研究所: 中国科学院研究生院, 2006
作者:  
李乡儒
收藏  |  浏览/下载:50/0  |  提交时间:2015/09/02
星系光谱的自动识别与分类技术研究 学位论文  OAI收割
工学博士, 中国科学院自动化研究所: 中国科学院研究生院, 2006
作者:  
赵梅芳
收藏  |  浏览/下载:65/0  |  提交时间:2015/09/02
Intelligent MRTD testing for thermal imaging system using ANN (EI CONFERENCE) 会议论文  OAI收割
ICO20: Remote Sensing and Infrared Devices and Systems, August 21, 2005 - August 26, 2005, Changchun, China
Sun J.; Ma D.
收藏  |  浏览/下载:25/0  |  提交时间:2013/03/25
The Minimum Resolvable Temperature Difference (MRTD) is the most widely accepted figure for describing the performance of a thermal imaging system. Many models have been proposed to predict it. The MRTD testing is a psychophysical task  for which biases are unavoidable. It requires laboratory conditions such as normal air condition and a constant temperature. It also needs expensive measuring equipments and takes a considerable period of time. Especially when measuring imagers of the same type  the test is time consuming. So an automated and intelligent measurement method should be discussed. This paper adopts the concept of automated MRTD testing using boundary contour system and fuzzy ARTMAP  but uses different methods. It describes an Automated MRTD Testing procedure basing on Back-Propagation Network. Firstly  we use frame grabber to capture the 4-bar target image data. Then according to image gray scale  we segment the image to get 4-bar place and extract feature vector representing the image characteristic and human detection ability. These feature sets  along with known target visibility  are used to train the ANN (Artificial Neural Networks). Actually it is a nonlinear classification (of input dimensions) of the image series using ANN. Our task is to justify if image is resolvable or uncertainty. Then the trained ANN will emulate observer performance in determining MRTD. This method can reduce the uncertainties between observers and long time dependent factors by standardization. This paper will introduce the feature extraction algorithm  demonstrate the feasibility of the whole process and give the accuracy of MRTD measurement.