中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
机构
采集方式
内容类型
发表日期
学科主题
筛选

浏览/检索结果: 共16条,第1-10条 帮助

条数/页: 排序方式:
Enhancing Face Recognition With Detachable Self-Supervised Bypass Networks 期刊论文  OAI收割
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 卷号: 33, 页码: 1588-1599
作者:  
He, Mingjie;  Zhang, Jie;  Shan, Shiguang;  Chen, Xilin
  |  收藏  |  浏览/下载:22/0  |  提交时间:2024/05/20
Beyond Single Reference for Training: Underwater Image Enhancement via Comparative Learning 期刊论文  OAI收割
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 卷号: 33, 期号: 6, 页码: 2561-2576
作者:  
Li, Kunqian;  Wu, Li;  Qi, Qi;  Liu, Wenjie;  Gao, Xiang
  |  收藏  |  浏览/下载:34/0  |  提交时间:2023/11/17
Methods for a blind analysis of isobar data collected by the STAR collaboration 期刊论文  OAI收割
NUCLEAR SCIENCE AND TECHNIQUES, 2021, 卷号: 32, 期号: 5, 页码: 8
作者:  
Adam, J.;  Adamczyk, L.;  Adams, J. R.;  Adkins, J. K.;  Agakishiev, G.
  |  收藏  |  浏览/下载:63/0  |  提交时间:2021/12/08
Blind deblurring from single motion image based on adaptive weighted total variation algorithm 期刊论文  OAI收割
IET SIGNAL PROCESSING, 2016, 卷号: 10, 期号: 6, 页码: 611-618
Wen, J; Zhao, JS; Cailing, W; Yan, SX; Wang, W
  |  收藏  |  浏览/下载:35/0  |  提交时间:2016/12/09
Altered Resting-State Network Connectivity in Congenital Blind 期刊论文  OAI收割
HUMAN BRAIN MAPPING, 2014, 卷号: 35, 期号: 6, 页码: 2573-2581
作者:  
Wang, Dawei;  Qin, Wen;  Liu, Yong;  Zhang, Yunting;  Jiang, Tianzi
收藏  |  浏览/下载:44/0  |  提交时间:2015/08/12
Extended antimicrobial prophylaxis after gastric cancer surgery: A systematic review and meta-analysis 期刊论文  OAI收割
WORLD JOURNAL OF GASTROENTEROLOGY, 2013, 卷号: 19, 期号: 13, 页码: 2104-2109
作者:  
Zhang ChunDong;  Zeng YongJi;  Li Zhen;  Chen Jing;  Li HongWu
  |  收藏  |  浏览/下载:25/0  |  提交时间:2021/02/02
Midfrequency-based real-time blind image restoration via independent component analysis and genetic algorithms 期刊论文  OAI收割
OPTICAL ENGINEERING, 2011, 卷号: 50, 期号: 4
作者:  
Luo, Yihan;  Fu, Chengyu
收藏  |  浏览/下载:40/0  |  提交时间:2015/09/21
时序数据的慢特征分析及其若干应用 学位论文  OAI收割
工学博士, 中国科学院自动化研究所: 中国科学院研究生院, 2011
作者:  
马奎俊
收藏  |  浏览/下载:381/0  |  提交时间:2015/09/02
Risk Analysis on Groundwater Resources Carrying Capaacity Based on Blind Number Theory 期刊论文  OAI收割
Wuhan University Journal of Natural Sciences, 2007, 卷号: 12, 期号: 4, 页码: 669-676
Ji Zhang(张继); Sujun Yu
收藏  |  浏览/下载:40/0  |  提交时间:2010/11/09
Multiwavelet based multispectral image fusion for corona detection (EI CONFERENCE) 会议论文  OAI收割
ICO20: Optical Information Processing, August 21, 2005 - August 26, 2005, Changchun, China
作者:  
Wang X.;  Yang H.-J.;  Sui Y.-X.;  Yan F.;  Yan F.
收藏  |  浏览/下载:42/0  |  提交时间:2013/03/25
Image fusion refers to the integration of complementary information provided by various sensors such that the new images are more useful for human or machine perception. Multiwavelet transform has simultaneous orthogonality  symmetry  compact support  and vanishing moment  which are not possible with scalar wavelet transform. Multiwavelet analysis can offer more precise image analysis than wavelet multiresolution analysis. In this paper  a new image fusion algorithm based on discrete multiwavelet transform (DMWT) to fuse the dual-spectral images generated from the corona detection system is presented. The dual-spectrum detection system is used to detect the corona and indicate its exact location. The system combines a solar-blind UV ICCD with a visible camera  where the UV image is useful for detecting UV emission from corona and the visible image shows the position of the corona. The developed fusion algorithm is proposed considering the feature of the UV and visible images adequately. The source images are performed at the pixel level. First  a decomposition step is taken with the DMWT. After the decomposition step  a pyramid for each source image in each level can be obtained. Then  an optimized coefficient fusion rule consisting of activity level measurement  coefficient combining and consistency verification is used to acquire the fused coefficients. This process reduces the impulse noise of UV image. Finally  a new fused image is obtained by reconstructing the fused coefficients using inverse DMWT. This image fusion algorithm has been applied to process the multispectral UV/visible images. Experimental results show that the proposed method outperforms the discrete wavelet transform based approach.