中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
长春光学精密机械与物... [3]
地理科学与资源研究所 [2]
成都山地灾害与环境研... [2]
地质与地球物理研究所 [2]
自动化研究所 [2]
心理研究所 [1]
更多
采集方式
OAI收割 [15]
内容类型
期刊论文 [7]
会议论文 [6]
SCI/SSCI论文 [1]
学位论文 [1]
发表日期
2022 [1]
2017 [1]
2016 [1]
2015 [1]
2014 [1]
2012 [2]
更多
学科主题
Mathematic... [1]
筛选
浏览/检索结果:
共15条,第1-10条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Back Analysis of Surrounding Rock Parameters in Pingdingshan Mine Based on BP Neural Network Integrated Mind Evolutionary Algorithm
期刊论文
OAI收割
MATHEMATICS, 2022, 卷号: 10, 期号: 10, 页码: -
作者:
Zhang, Jianguo
;
Li, Peitao
;
Yin, Xin
;
Wang, Sheng
;
Zhu, Yuanguang
  |  
收藏
  |  
浏览/下载:11/0
  |  
提交时间:2023/08/02
mind evolutionary algorithm
BP neural network
MEA-BP model
rock mechanical parameters
orthogonal test method
An improved back propagation neural network prediction model for subsurface drip irrigation system
期刊论文
OAI收割
COMPUTERS & ELECTRICAL ENGINEERING, 2017, 页码: 58-65
作者:
Gu, Jian
;
Yin, Guanghua
;
Huang, Pengfei
;
Guo, Jinlu
;
Chen, Lijun
  |  
收藏
  |  
浏览/下载:37/0
  |  
提交时间:2018/09/10
BP neural network
Genetic algorithm
Crop yield-irrigation model
Subsurface drip irrigation system
A new gene regulatory network model based on BP algorithm for interrogating differentially expressed genes of Sea Urchin
期刊论文
OAI收割
SPRINGERPLUS, 2016, 卷号: 5, 期号: 1, 页码: 1911
作者:
Liu, Longlong
;
Zhao, Tingting
;
Ma, Meng
;
Wang, Yan
;
Wang Y(王燕)
收藏
  |  
浏览/下载:28/0
  |  
提交时间:2017/01/13
BP algorithm
Gene regulatory network
Neural network model
Differentially expressed Sea Urchin genes
BP-AR-BASED HUMAN JOINT ANGLE ESTIMATION USING MULTI-CHANNEL SEMG
期刊论文
OAI收割
INTERNATIONAL JOURNAL OF ROBOTICS & AUTOMATION, 2015, 卷号: 30, 期号: 3, 页码: 227-237
作者:
Tong, Lina
;
Zhang, Feng
;
Hou, Zeng-Guang
;
Wang, Weiqun
;
Peng, Liang
收藏
  |  
浏览/下载:42/0
  |  
提交时间:2015/10/13
sEMG-joint angle estimation
rehabilitation
moving Butterworth filtering method
BP neural network
autoregressive (AR) model
Deep-seated Landslide Deformation Forecasting Model Based on the Time Series of Groundwater level
会议论文
OAI收割
the 2014 International Debris-Flow Workshop, National Chengkun University,Taiwan,Tainan, Otc.2-3,2014
作者:
Cui Y(崔云)
;
Kong JM(孔纪名)
收藏
  |  
浏览/下载:33/0
  |  
提交时间:2014/12/17
response characteristics
groundwater level observation
deep-seated landslide forecasting
BP neural network model
Environmental Pollution and its Influencing Factors in Mountainous and Hilly Rural Area of Sichuan Province in China
会议论文
OAI收割
2012 International Conference on Energy and Environmental Protection, 内蒙古呼和浩特, 2012-6-23~24
作者:
Shaoquan Liu
;
Fangting Xie
收藏
  |  
浏览/下载:61/0
  |  
提交时间:2012/12/30
BP Neural Network Model
Influencing Factors
Mountainous and Hilly Rural Area
Rural Environmental Pollution
Sichuan
On grass yield remote sensing estimation models of China's northern farming-pastoral ecotone
会议论文
OAI收割
Advances in Intelligent and Soft Computing, 2012
作者:
Zhu Xiaohua
收藏
  |  
浏览/下载:21/0
  |  
提交时间:2012/12/01
Estimation
Models
Monitoring
nasa
Neural networks
Nonlinear systems
Remote sensing
Vegetation
BP neural network model
BP neural networks
China's northern farming-pastoral ecotone
Estimation models
Grass yield
Non-linear model
Sample data
Vegetation index
Yield conditions
Yield estimation
Double inverted pendulum control based on three-loop PID and improved BP neural network (EI CONFERENCE)
会议论文
OAI收割
2011 2nd International Conference on Digital Manufacturing and Automation, ICDMA 2011, August 5, 2011 - August 7, 2011, Zhangjiajie, Hunan, China
作者:
Fan Y.
收藏
  |  
浏览/下载:37/0
  |  
提交时间:2013/03/25
To deal with the defects of BP neural networks used in balance control of inverted pendulum
such as longer train time and converging in partial minimum
this article reaLizes the control of double inverted pendulum with improved BP algorithm of artificial neural networks(ANN)
builds up a training model of test simulation and the BP network is 6-10-1 structure. Tansig function is used in hidden layer and PureLin function is used in output layer
LM is used in training algorithm. The training data is acquried by three-loop PID algorithm. The model is learned and trained with Matlab calculating software
and the simuLink simulation experiment results prove that improved BP algorithm for inverted pendulum control has higher precision
better astringency and lower calculation. This algorithm has wide appLication on nonLinear control and robust control field in particular. 2011 IEEE.
Responses of River Runoff to Climate Change Based on Nonlinear Mixed Regression Model in Chaohe River Basin of Hebei Province, China
期刊论文
OAI收割
CHINESE GEOGRAPHICAL SCIENCE, 2010, 卷号: 20, 期号: 2, 页码: 152-158
作者:
Jiang Yan
;
Liu Changming
;
Zheng Hongxing
;
Li Xuyong
;
Wu Xianing
收藏
  |  
浏览/下载:22/0
  |  
提交时间:2015/07/30
river runoff
runoff forecast
nonlinear mixed regression model
linear multi-regression model
linear mixed regression model
BP neural network
Environment modeling of AS-R robot based on BP Neural Network (EI CONFERENCE)
会议论文
OAI收割
2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering, CMCE 2010, August 24, 2010 - August 26, 2010, Changchun, China
Xie M.-J.
;
Yu X.-L.
;
Wang Z.-Q.
收藏
  |  
浏览/下载:34/0
  |  
提交时间:2013/03/25
There are some limitations when environment model of AS-R mobile robot is obtained by only using a separate CCD camera or ultrasonic sensor array. The BP neural network is designed to fuse information of the two sensors to obtain the robot's environment model in this paper. The input of BP neural network is the intercept and slope of the edge line obtained CCD camera and ultrasonic sensor arrays
which is processed by through the global coordinates of coordinate transformation. The output of BP network is the fused intercept and slope of the straight edge. Experiment shows that environment model is feasible for the AS-R mobile robot and the environment modeling method has more reliability and accuracy. 2010 IEEE.