中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
机构
采集方式
内容类型
发表日期
学科主题
筛选

浏览/检索结果: 共4条,第1-4条 帮助

条数/页: 排序方式:
Investigation of radial basis function dynamic mesh method with rotation correction based on adaptive background mesh 期刊论文  OAI收割
COMPUTERS & FLUIDS, 2024, 卷号: 276, 页码: 27
作者:  
Tang H(唐晗);  Zheng GN(郑冠男);  Zhang YC(张煜宸)
  |  收藏  |  浏览/下载:13/0  |  提交时间:2024/06/14
Quantum QR decomposition in the computational basis 期刊论文  OAI收割
QUANTUM INFORMATION PROCESSING, 2020, 卷号: 19, 期号: 8, 页码: 16
作者:  
Ma, Guangsheng;  Li, Hongbo;  Zhao, Jiman
  |  收藏  |  浏览/下载:20/0  |  提交时间:2020/09/23
Drag-reduction design on high-speed trains with intelligent optimization algorithm 会议论文  OAI收割
Ajaccio, Corsica, France, 8-11 April 2014
作者:  
Yang GW(杨国伟);  Yao SB(姚拴宝);  Guo DL(郭迪龙)
  |  收藏  |  浏览/下载:32/0  |  提交时间:2018/11/08
Affine object recognition and affine parameters estimation based on covariant matrix (EI CONFERENCE) 会议论文  OAI收割
2008 International Symposium on Information Science and Engineering, ISISE 2008, December 20, 2008 - December 22, 2008, Shanghai, China
作者:  
Wang Y.;  Wang Y.;  Wang Y.;  Wang Y.;  Wang Y.
收藏  |  浏览/下载:133/0  |  提交时间:2013/03/25
A new method of affine object recognition and affine parameters estimation is presented. For a real-time image and a group of templates  in addition  firstly  on the basis of correct recognition  we segment the object regions in them and compute their covariant matrices. Secondly  it can estimate affine parameters exactly  normalize the ellipse regions defined by covariant matrices to circle regions to get rotational invariants  and the estimated error is within 3%. 2008 IEEE.  and compute the similarity function value between rotational invariants of real-time image and every template respectively. Then compare the values with threshold set in advance  if more than one value is larger than threshold  take the corresponding templates as candidates  and compute affine matrix between real-time image and every candidate. Finally  transform the realtime image with every affine matrix and match the result with corresponding candidate by classical matching methods. Experimental results show that the presented method is robust to illumination  with low computational complexity  and it can realize recognition of different affine objects