中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
力学研究所 [2]
长春光学精密机械与物... [1]
数学与系统科学研究院 [1]
采集方式
OAI收割 [4]
内容类型
会议论文 [2]
期刊论文 [2]
发表日期
2024 [1]
2020 [1]
2014 [1]
2008 [1]
学科主题
筛选
浏览/检索结果:
共4条,第1-4条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Investigation of radial basis function dynamic mesh method with rotation correction based on adaptive background mesh
期刊论文
OAI收割
COMPUTERS & FLUIDS, 2024, 卷号: 276, 页码: 27
作者:
Tang H(唐晗)
;
Zheng GN(郑冠男)
;
Zhang YC(张煜宸)
  |  
收藏
  |  
浏览/下载:13/0
  |  
提交时间:2024/06/14
Adaptive background mesh
Radial basis functions (RBF)
Rotation correction
Boundary layer quality
Computational efficiency
Quantum QR decomposition in the computational basis
期刊论文
OAI收割
QUANTUM INFORMATION PROCESSING, 2020, 卷号: 19, 期号: 8, 页码: 16
作者:
Ma, Guangsheng
;
Li, Hongbo
;
Zhao, Jiman
  |  
收藏
  |  
浏览/下载:20/0
  |  
提交时间:2020/09/23
Quantum algorithms
Computational basis
Quantum QR decomposition
Drag-reduction design on high-speed trains with intelligent optimization algorithm
会议论文
OAI收割
Ajaccio, Corsica, France, 8-11 April 2014
作者:
Yang GW(杨国伟)
;
Yao SB(姚拴宝)
;
Guo DL(郭迪龙)
  |  
收藏
  |  
浏览/下载:32/0
  |  
提交时间:2018/11/08
Aerodynamic drag
Aerodynamics
Ant colony optimization
Computational fluid dynamics
Deformation
Design
Drag reduction
Interpolation
Iterative methods
Radial basis function networks
Railroad cars
Railroad transportation
Railroads
Aerodynamic optimization
Grid deformation
High speed train (HST)
Intelligent optimization algorithm
Kriging surrogate model
Affine object recognition and affine parameters estimation based on covariant matrix (EI CONFERENCE)
会议论文
OAI收割
2008 International Symposium on Information Science and Engineering, ISISE 2008, December 20, 2008 - December 22, 2008, Shanghai, China
作者:
Wang Y.
;
Wang Y.
;
Wang Y.
;
Wang Y.
;
Wang Y.
收藏
  |  
浏览/下载:133/0
  |  
提交时间:2013/03/25
A new method of affine object recognition and affine parameters estimation is presented. For a real-time image and a group of templates
in addition
firstly
on the basis of correct recognition
we segment the object regions in them and compute their covariant matrices. Secondly
it can estimate affine parameters exactly
normalize the ellipse regions defined by covariant matrices to circle regions to get rotational invariants
and the estimated error is within 3%. 2008 IEEE.
and compute the similarity function value between rotational invariants of real-time image and every template respectively. Then compare the values with threshold set in advance
if more than one value is larger than threshold
take the corresponding templates as candidates
and compute affine matrix between real-time image and every candidate. Finally
transform the realtime image with every affine matrix and match the result with corresponding candidate by classical matching methods. Experimental results show that the presented method is robust to illumination
with low computational complexity
and it can realize recognition of different affine objects