中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
机构
采集方式
内容类型
发表日期
学科主题
筛选

浏览/检索结果: 共11条,第1-10条 帮助

条数/页: 排序方式:
Discrete Deep Hashing with Ranking Optimization for Image Retrieval 期刊论文  OAI收割
IEEE Transactions on Neural Networks and Learning Systems, 2020, 卷号: 31, 期号: 6, 页码: 2052-2063
作者:  
Lu, Xiaoqiang;  Chen, Yaxiong;  Li, Xuelong
  |  收藏  |  浏览/下载:54/0  |  提交时间:2020/06/24
Grout diffusion in silty fine sand stratum with high groundwater level for tunnel construction 期刊论文  OAI收割
TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2019, 卷号: 93, 页码: 11
作者:  
Liu, Xiaoli;  Wang, Fang;  Huang, Jin;  Wang, Sijing;  Zhang, Zhizeng
  |  收藏  |  浏览/下载:139/0  |  提交时间:2019/11/14
Comparative Study of Hybrid-Wavelet Artificial Intelligence Models for Monthly Groundwater Depth Forecasting in Extreme Arid Regions, Northwest China 期刊论文  iSwitch采集
WATER RESOURCES MANAGEMENT, 2018, 卷号: 32, 期号: 1, 页码: 301-323
作者:  
Yu, Haijiao;  Wen, Xiaohu;  Feng, Qi
收藏  |  浏览/下载:60/0  |  提交时间:2019/10/09
Wavelet analysis-artificial neural network conjunction models for multi-scale monthly groundwater level predicting in an arid inland river basin, northwestern China 期刊论文  iSwitch采集
HYDROLOGY RESEARCH, 2017, 卷号: 48, 期号: 6, 页码: 1710-1729
作者:  
Wen, Xiaohu;  Feng, Qi;  Deo, Ravinesh C.;  Wu, Min;  Si, Jianhua
收藏  |  浏览/下载:52/0  |  提交时间:2019/10/09
Wavelet and adaptive neuro-fuzzy inference system conjunction model for groundwater level predicting in a coastal aquifer 期刊论文  iSwitch采集
Neural computing & applications, 2015, 卷号: 26, 期号: 5, 页码: 1203-1215
作者:  
Wen, Xiaohu;  Feng, Qi;  Yu, Haijiao;  Wu, Jun;  Si, Jianhua
收藏  |  浏览/下载:45/0  |  提交时间:2019/09/04
High-Accuracy Amplitude and Phase Measurements for Low-Level RF Systems 期刊论文  OAI收割
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2012, 卷号: 61, 期号: 4, 页码: 912-921
作者:  
Wang, Z;  Mao, LH;  刘熔; Liu, R
收藏  |  浏览/下载:27/0  |  提交时间:2016/04/08
A trace representation of binary jacobi sequences 期刊论文  iSwitch采集
Discrete mathematics, 2009, 卷号: 309, 期号: 6, 页码: 1517-1527
作者:  
Dai, Zongduo;  Gong, Guang;  Song, Hong-Yeop
收藏  |  浏览/下载:27/0  |  提交时间:2019/05/10
The effect of investor psychology on the complexity of stock market: An analysis based on cellular automaton model 期刊论文  OAI收割
COMPUTERS & INDUSTRIAL ENGINEERING, 2009, 卷号: 56, 期号: 1, 页码: 7,63-69
Fan, Y; Ying, SJ; Wang, BH; Wei, YM
收藏  |  浏览/下载:24/0  |  提交时间:2012/11/12
High order numerical methods to a type of delta function integrals 期刊论文  OAI收割
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 卷号: 226, 期号: 2, 页码: 1952-1967
作者:  
Wen, Xin
  |  收藏  |  浏览/下载:25/0  |  提交时间:2018/07/30
A new algorithm of image segmentation for overlapping grain image (EI CONFERENCE) 会议论文  OAI收割
ICO20: Optical Information Processing, August 21, 2005 - August 26, 2005, Changchun, China
作者:  
Zhang X.;  Zhang X.;  Zhang X.
收藏  |  浏览/下载:21/0  |  提交时间:2013/03/25
Image segmentation is primary issue in image processing  at the same time it is principal problem in low level vision in computer vision field. It is the key technology to process image analysis  image comprehend and image depict successfully. Aim at measurement of granularity size of nonmetal grain  a new algorithm of image segmentation and parameters calculation for overlapping grain image is studied. The hypostasis of this algorithm is present some new attributes of graph sequence from discrete attribute of graph  consequently achieve that pick up the geometrical characteristics from input graph  and new graph sequence which in favor of image segmentation is recombined. The conception that image edge denoted with "twin-point" is put forward  base on geometrical characters of point  image edge is transformed into serial edge  and on recombined serial image edge  based on direction vector definition of line and some additional restricted conditions  the segmentation twin-points are searched with  thus image segmentation is accomplished. Serial image edge is transformed into twin-point pattern  to realize calculation of area and granularity size of nonmetal grain. The inkling and uncertainty on selection of structure element which base on mathematical morphology are avoided in this algorithm  and image segmentation and parameters calculation are realized without changing grain's self statistical characters.