中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
自动化研究所 [4]
计算技术研究所 [1]
长春光学精密机械与物... [1]
光电技术研究所 [1]
采集方式
OAI收割 [7]
内容类型
期刊论文 [3]
会议论文 [2]
学位论文 [2]
发表日期
2023 [1]
2022 [1]
2017 [1]
2012 [1]
2010 [1]
2009 [1]
更多
学科主题
模式识别与智能系统 [1]
筛选
浏览/检索结果:
共7条,第1-7条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
发表日期升序
发表日期降序
提交时间升序
提交时间降序
作者升序
作者降序
Multi-Projection Fusion and Refinement Network for Salient Object Detection in 360 degrees Omnidirectional Image
期刊论文
OAI收割
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 页码: 13
作者:
Cong, Runmin
;
Huang, Ke
;
Lei, Jianjun
;
Zhao, Yao
;
Huang, Qingming
  |  
收藏
  |  
浏览/下载:24/0
  |  
提交时间:2023/07/12
360? omnidirectional image
cube-unfolding (CU)
dynamic weighting
filtration and refinement (FR)
salient object detection (SOD)
IRDCLNet: Instance Segmentation of Ship Images Based on Interference Reduction and Dynamic Contour Learning in Foggy Scenes
期刊论文
OAI收割
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 卷号: 32, 期号: 9, 页码: 6029-6043
作者:
Sun, Yuxin
;
Su, Li
;
Luo, Yongkang
;
Meng, Hao
;
Zhang, Zhi
  |  
收藏
  |  
浏览/下载:51/0
  |  
提交时间:2022/11/14
Marine vehicles
Image segmentation
Meteorology
Feature extraction
Interference
Object detection
Visualization
Foggy scene
ship instance segmentation
interference reduction module
dynamic contour learning
Spatio-Temporal Self-Organizing Map Deep Network for Dynamic Object Detection from Videos
会议论文
OAI收割
Honolulu, Hawaii, 20170721-20170726
作者:
Du, Yang
;
Yuan, Chunfeng
;
Li, Bing
;
Hu, Weiming
;
Maybank, Stephen
  |  
收藏
  |  
浏览/下载:25/0
  |  
提交时间:2018/01/04
Dynamic Object Detection
Self-organizing Map
Deep Network
基于视觉的动态场景下目标跟踪方法研究
学位论文
OAI收割
工学博士, 中国科学院自动化研究所: 中国科学院研究生院, 2012
作者:
尹春霞
收藏
  |  
浏览/下载:42/0
  |  
提交时间:2015/09/02
目标跟踪
动态场景
Mean-shift
粒子滤波
特征检测
object tracking
dynamic scenes
Mean-shift
particle
feature detection
Spatio-temporal context for codebook-based dynamic background subtraction
期刊论文
OAI收割
AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2010, 卷号: 64, 期号: 8, 页码: 739-747
作者:
Wu, Mingjun
;
Peng, Xianrong
收藏
  |  
浏览/下载:16/0
  |  
提交时间:2015/09/21
Dynamic background subtraction
Object detection
Codebook
Spatio-temporal context
Markov random field
复杂场景下的运动目标检测
学位论文
OAI收割
工学博士, 中国科学院自动化研究所: 中国科学院研究生院, 2009
作者:
刘舟
收藏
  |  
浏览/下载:69/0
  |  
提交时间:2015/09/02
运动目标检测
背景建模
阴影去除
动态背景
遗弃物检测
moving object detection
background modeling
shadow removal
dynamic background
left-luggage detection
A segment detection method based on improved Hough transform (EI CONFERENCE)
会议论文
OAI收割
ICO20: Optical Information Processing, August 21, 2005 - August 26, 2005, Changchun, China
作者:
Yao Z.-J.
收藏
  |  
浏览/下载:30/0
  |  
提交时间:2013/03/25
Hough transform is recognized as a powerful tool in shape analysis which gives good results even in the presence of noise and the disconnection of edge. However
3. applying the standard Hough transform equation to every point of the input image edge
4. according to the local threshold
6. merging the segments whose extreme points are near. Experiment results show the approach not only can recognize regular geometric object but also can extract the segment feature of real targets in complex environment. So the proposed method can be used in the target detection of complicated scenes
traditional Hough transform can only detect the lines
2. quantizing the parameter space
and extracting a group of maximums according to the global threshold
eliminating spurious peaks which are caused by the spreading effects
and will improve the precision of tracking.
cannot give the endpoints and length of the line segments and it is vulnerable to the quantization errors. Based on the analysis of its limitations
Hough transform has been improved in order to detect line segment feature of targets. The algorithm aims to avoid the loss of spatial information
as well as to eliminate the spurious peaks and fix on the line segments endpoints accurately
5. fixing on the endpoints of the segments according to the dynamic clustering rule
which can expediently be used for the description and classification of regular objects. The method consists of 6 steps: 1. setting up the image
parameter and line-segment spaces