中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
数学与系统科学研究院 [4]
采集方式
OAI收割 [4]
内容类型
期刊论文 [4]
发表日期
2022 [1]
2021 [2]
2016 [1]
学科主题
筛选
浏览/检索结果:
共4条,第1-4条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
A fast Euler-Maruyama method for fractional stochastic differential equations
期刊论文
OAI收割
JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 页码: 19
作者:
Zhang, Jingna
;
Tang, Yifa
;
Huang, Jianfei
  |  
收藏
  |  
浏览/下载:22/0
  |  
提交时间:2023/02/07
Fractional stochastic differential equations
Euler-Maruyama method
Sum-of-exponentials approximation
Strong convergence
Computational efficiency
Compensated projected Euler-Maruyama method for stochastic differential equations with superlinear jumps
期刊论文
OAI收割
APPLIED MATHEMATICS AND COMPUTATION, 2021, 卷号: 393, 页码: 11
作者:
Li, Min
;
Huang, Chengming
;
Chen, Ziheng
  |  
收藏
  |  
浏览/下载:30/0
  |  
提交时间:2021/04/26
Stochastic differential equations with jumps
Compensated projected Euler-Maruyama method
Mean square convergence
C-stability
B-consistency
Convergence and Stability of the Truncated Euler-Maruyama Method for Stochastic Differential Equations with Piecewise Continuous Arguments
期刊论文
OAI收割
NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2021, 卷号: 14, 期号: 1, 页码: 194-218
作者:
Geng, Yidan
;
Song, Minghui
;
Lu, Yulan
;
Liu, Mingzhu
  |  
收藏
  |  
浏览/下载:30/0
  |  
提交时间:2021/01/14
Stochastic differential equations with piecewise continuous argument
local Lipschitz condition
Khasminskii-type condition
truncated Euler-Maruyama method
convergence and stability
Exponential stability of the exact and numerical solutions for neutral stochastic delay differential equations
期刊论文
OAI收割
APPLIED MATHEMATICAL MODELLING, 2016, 卷号: 40, 期号: 1, 页码: 19-30
作者:
Zong, Xiaofeng
;
Wu, Fuke
  |  
收藏
  |  
浏览/下载:22/0
  |  
提交时间:2018/07/30
Neutral stochastic delay differential equations
Moment exponential stability
Euler Maruyama method
Backward Euler Maruyama method