中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
长春光学精密机械与物... [9]
地理科学与资源研究所 [2]
烟台海岸带研究所 [2]
力学研究所 [1]
金属研究所 [1]
新疆生态与地理研究所 [1]
更多
采集方式
OAI收割 [18]
iSwitch采集 [1]
内容类型
会议论文 [9]
期刊论文 [8]
SCI/SSCI论文 [1]
学位论文 [1]
发表日期
2023 [3]
2020 [3]
2016 [3]
2012 [3]
2011 [1]
2010 [2]
更多
学科主题
Environmen... [1]
地图学与地理信息系统 [1]
筛选
浏览/检索结果:
共19条,第1-10条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
A thermal load identification method based on physics-guided neural network for honeycomb sandwich structures
期刊论文
OAI收割
SMART MATERIALS AND STRUCTURES, 2023, 卷号: 32, 期号: 7, 页码: 75008
作者:
Du WQ(杜文琪)
;
Yang LK(杨乐凯)
;
Lu LL(路玲玲)
;
Le J(乐杰)
;
Yu MK(于明凯)
  |  
收藏
  |  
浏览/下载:17/0
  |  
提交时间:2023/06/15
thermal load identification
physics-guided neural network
physics-guided loss function
thermal feature parameters
laser irradiation
基于微波散射实验的油种识别研究
期刊论文
OAI收割
海洋与湖沼, 2023, 卷号: 54, 期号: 1, 页码: 30-43
作者:
马靖
;
过杰
  |  
收藏
  |  
浏览/下载:24/0
  |  
提交时间:2023/08/16
oil type identification
synthetic aperture radar (SAR)
C-band full-polarization scatterometer
sensitive feature parameters
油种识别
合成孔径雷达(SAR)
C波段全极化散射计
敏感特征参数
基于微波散射实验的油种识别研究
期刊论文
OAI收割
海洋与湖沼, 2023, 卷号: 54, 期号: 1, 页码: 30-43
作者:
马靖
;
过杰
  |  
收藏
  |  
浏览/下载:6/0
  |  
提交时间:2024/10/28
oil type identification
synthetic aperture radar (SAR)
C-band full-polarization scatterometer
sensitive feature parameters
油种识别
合成孔径雷达(SAR)
C波段全极化散射计
敏感特征参数
天山区域典型灌区生长季土壤盐分含量时空差异分析
学位论文
OAI收割
北京: 中国科学院大学, 2020
作者:
徐红涛
  |  
收藏
  |  
浏览/下载:76/0
  |  
提交时间:2021/12/10
机器学习
支持向量回归
土壤盐渍化
建模变量和模型参数同步优选
时空变化
Machine learning
Support vector regression
Soil salinization
Simultaneous optimization of feature subset and model parameters
temporal and spatial changes
Automatic process parameters tuning and surface roughness estimation for laser cleaning
期刊论文
OAI收割
IEEE Access, 2020, 卷号: 8, 页码: 20904-20919
作者:
Liu, Haoting
;
Li, Jiacheng
;
Yang, Yong
;
Lan, Jinhui
;
Xue, Yafei
  |  
收藏
  |  
浏览/下载:38/0
  |  
提交时间:2020/03/12
Laser cleaning
process parameters
surface roughness
image feature
thermophysical property
Detection model of soil salinization information in the Yellow River Delta based on feature space models with typical surface parameters derived from Landsat8 OLI image
期刊论文
OAI收割
GEOMATICS NATURAL HAZARDS & RISK, 2020, 卷号: 11, 期号: 1, 页码: 288-300
作者:
Guo, Bing
;
Zang, Wenqian
;
Luo, Wei
;
Wen, Ye
;
Yang, Fei
  |  
收藏
  |  
浏览/下载:86/0
  |  
提交时间:2020/05/19
Soil salinization
feature space
surface parameters
Landsat 8 OLI
Yellow River Delta
Supplemental sampling for digital soil mapping based on prediction uncertainty from both the feature domain and the spatial domain
SCI/SSCI论文
OAI收割
2016
作者:
Li Y.
;
Zhu, A. X.
;
Shi, Z.
;
Liu, J.
;
Du, F.
  |  
收藏
  |  
浏览/下载:30/0
  |  
提交时间:2017/11/09
Prediction uncertainty
Supplemental sampling
Feature domain
Spatial
domain
Digital soil mapping
optimal interpolation
constrained optimization
design
variables
classification
attributes
parameters
variogram
schemes
Improved bore-sight calibration for airborne light detection and ranging using planar patches
期刊论文
OAI收割
Journal of Applied Remote Sensing, 2016, 卷号: 10, 期号: 2
作者:
Li, Dong
;
Guo, Huadong
;
Wang, Cheng
;
Dong, Pinliang
;
Zuo, Zhengli
收藏
  |  
浏览/下载:28/0
  |  
提交时间:2017/04/24
SPECIES CLASSIFICATION
FEATURE PARAMETERS
LIDAR INTENSITY
CANOPY
FOREST
TERRESTRIAL
The consistency between na content distribution at the subsurface and the lake body's movement in lop nur
期刊论文
iSwitch采集
International journal of digital earth, 2016, 卷号: 9, 期号: 7, 页码: 662-675
作者:
Li, Bingyan
;
Gong, Huaze
;
Shao, Yun
;
Li, Lin
;
Wang, Longfei
收藏
  |  
浏览/下载:40/0
  |  
提交时间:2019/05/09
Lop nur
`ear' feature
Polsar
Polarimetric decomposition parameters
Ga-pls
Moving target detection and classification using spiking neural networks (EI CONFERENCE)
会议论文
OAI收割
2nd Sino-Foreign-Interchange Workshop on Intelligent Science and Intelligent Data Engineering, IScIDE 2011, October 23, 2011 - October 25, 2011, Xi'an, China
作者:
Sun H.
;
Wang Z.
;
Wang Z.
;
Wang P.
;
Sun H.
收藏
  |  
浏览/下载:41/0
  |  
提交时间:2013/03/25
We proposed a spiking neural network (SNN) to detect moving target in video streams and classify them into real categorization in this paper. The proposed SNN uses spike trains to encoding information such as the gray value of pixels or feature parameters of the target
detects moving target by simulating the visual cortex for motion detection in biological system with axonal delays and classify them into different categorizations according to their distance to categorization's centers found by Hebb learning rule. The experimental results show that the proposed SNN is promising in intelligence computation and applicable in general visual surveillance system. 2012 Springer-Verlag.