中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
机构
采集方式
内容类型
发表日期
学科主题
筛选

浏览/检索结果: 共5条,第1-5条 帮助

条数/页: 排序方式:
Research on Intrusion Detection of Industrial Control System Based on FastICA-SVM Method 会议论文  OAI收割
Dublin, Ireland, July 19-23, 2021
作者:  
Chen, Haonan;  Liu XD(刘贤达);  Wang TY(王天宇);  Zhang, Xuejing
  |  收藏  |  浏览/下载:28/0  |  提交时间:2021/08/21
基于VMD和改进的FastICA算法的旋转机械故障信号分离方法研究 期刊论文  OAI收割
仪器仪表标准化与计量, 2021, 期号: 1, 页码: 15-19
作者:  
孙懿;  刘意杨;  宋纯贺;  冯铁英;  张雪健
  |  收藏  |  浏览/下载:37/0  |  提交时间:2021/03/14
Research on Applications of FastICA Algorithm in the Detection of Dangerous Liquids 期刊论文  OAI收割
INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2019, 卷号: 33, 期号: 2
作者:  
Zhou, Dongmei;  Qiu, Shi;  Tan, Jiahai;  Li, Xiaofeng;  Chen, Chen
  |  收藏  |  浏览/下载:53/0  |  提交时间:2018/11/21
Using Improved ICA Method for Hyperspectral Data Classification 期刊论文  OAI收割
Arabian Journal for Science and Engineering, 2014, 卷号: 39, 期号: 1, 页码: 181-189
-
收藏  |  浏览/下载:16/0  |  提交时间:2016/05/16
Infrared face recognition using linear subspace analysis (EI CONFERENCE) 会议论文  OAI收割
MIPPR 2009 - Pattern Recognition and Computer Vision: 6th International Symposium on Multispectral Image Processing and Pattern Recognition, October 30, 2009 - November 1, 2009, Yichang, China
作者:  
Wang D.
收藏  |  浏览/下载:34/0  |  提交时间:2013/03/25
Infrared image offers the main advantage over visible image of being invariant to illumination changes for face recognition. In this paper  based on the introduction of main methods of linear subspace analysis  such as Principal Component Analysis (PCA)  Linear Discriminant Analysis(LDA) and Fast Independent Component Analysis (FastICA)  the application of these methods to the recognition of infrared face images offered by OTCBVS workshop are investigated  and the advantages and disadvantages are compared. Experimental results show that the combination approach of PCA and LDA leads to better classification performance than single PCA approach or LDA approach  while the FastICA approach leads to the best classification performance with the improvement of nearly 5% compared with the combination approach. 2009 Copyright SPIE - The International Society for Optical Engineering.