中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
金属研究所 [1]
长春光学精密机械与物... [1]
光电技术研究所 [1]
合肥物质科学研究院 [1]
采集方式
OAI收割 [4]
内容类型
会议论文 [2]
期刊论文 [2]
发表日期
2017 [1]
2016 [1]
2014 [1]
2006 [1]
学科主题
筛选
浏览/检索结果:
共4条,第1-4条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
An optimized method to calculate error correction capability of tool influence function in frequency domain
会议论文
OAI收割
作者:
Wang, Jia
;
Hou, Xi
;
Wan, Yongjian
;
Shi, Chunyan
  |  
收藏
  |  
浏览/下载:22/0
  |  
提交时间:2018/12/20
Codes (symbols) - Error correction - Frequency domain analysis - Method of moments - Polishing - Power spectral density - Spectral density
Temperature control characteristics analysis of lead-cooled fast reactor with natural circulation
期刊论文
OAI收割
ANNALS OF NUCLEAR ENERGY, 2016, 卷号: 90, 期号: 无, 页码: 54-61
作者:
Yang, Minghan
;
Song, Yong
;
Wang, Jianye
;
Xu, Peng
;
Zhang, Guangyu
  |  
收藏
  |  
浏览/下载:17/0
  |  
提交时间:2018/01/25
Lfr
Natural Circulation
Temperature Control Characteristic
Transfer Function Matrix
Frequency Domain Analysis Method
Model Research of Electric Coal Calorific Value Based on Near Infrared Frequency Domain Self-Adaption Analysis Method
期刊论文
OAI收割
SPECTROSCOPY AND SPECTRAL ANALYSIS, 2014, 卷号: 34, 期号: 10, 页码: 2792-2798
作者:
Li Zhi
;
Wang Shenghao
;
Zhao Yong
;
Wang Xiangfeng
;
Li Yaozheng
  |  
收藏
  |  
浏览/下载:15/0
  |  
提交时间:2021/02/26
SPECTROSCOPY
Near infrared spectra
Fast Fourier transform
Frequency domain self-adaption analysis method
Calorific value of electric coal
Quantitative analysis model
Arc fault signatures detection on aircraft wiring system (EI CONFERENCE)
会议论文
OAI收割
6th World Congress on Intelligent Control and Automation, WCICA 2006, June 21, 2006 - June 23, 2006, Dalian, China
Hongkun Z.
;
Tao C.
;
Wenjun L.
收藏
  |  
浏览/下载:21/0
  |  
提交时间:2013/03/25
In this paper an arc fault detection method Is proposed based on characteristics of the fault current of an electric arc. A localized signal processing method Is developed using wavelet analysis to decompose the differential current signal Into a series of wavelet components
each of which Is a time-domain signal that covers a specific frequency band. Thus
more distinctive signal features that represent arc faults and other fault transient phenomena are extracted. As a result
by quantifying the extracted features
an arc faults are distinguished from phenomena similar to arc and other fault transients using the differences In the quantified features. Simulation studies have demonstrated that the proposed method Is reliable and simple. 2006 IEEE.