中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
机构
采集方式
内容类型
发表日期
学科主题
筛选

浏览/检索结果: 共4条,第1-4条 帮助

条数/页: 排序方式:
Multimodal Unknown Surface Material Classification and Its Application to Physical Reasoning 期刊论文  OAI收割
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 2022, 卷号: 18, 18, 期号: 7, 页码: 4406-4416, 4406-4416
作者:  
Wei, Junhang;  Cui, Shaowei;  Hu, Jingyi;  Hao, Peng;  Wang, Shuo
  |  收藏  |  浏览/下载:48/0  |  提交时间:2022/06/10
图像目标检测与识别技术研究 学位论文  OAI收割
工学博士, 中国科学院自动化研究所: 中国科学院研究生院, 2010
作者:  
夏晓珍
收藏  |  浏览/下载:225/0  |  提交时间:2015/09/02
基于支持向量机遥感图像融合分类方法研究进展 期刊论文  OAI收割
安徽农业科学, 2010, 卷号: 38, 期号: 17, 页码: 9235-9238
作者:  
郭立萍;  唐家奎;  米素娟;  张成雯;  赵理君
  |  收藏  |  浏览/下载:2/0  |  提交时间:2024/05/07
Using bidirectional binary particle swarm optimization for feature selection in feature-level fusion recognition system (EI CONFERENCE) 会议论文  OAI收割
2009 4th IEEE Conference on Industrial Electronics and Applications, ICIEA 2009, May 25, 2009 - May 27, 2009, Xi'an, China
作者:  
Wang D.;  Wang Y.;  Wang Y.;  Wang Y.;  Wang Y.
收藏  |  浏览/下载:24/0  |  提交时间:2013/03/25
In feature-level fusion recognition system  the other is optimizing system sensor design to get outstanding cost performance. So feature selection become usually necessary to reduce dimensionality of the combination of multi-sensor features and improve system performance in system design. In general  there are two main missions. One is improving the recognition correct rate as soon as possible  the optimization is usually applied to feature selection because of its computational feasibility and validity. For further improving recognition accuracy and reducing selected feature dimensions  this paper presents a more rational and accurate optimization  Bidirectional Binary Particle Swarm Optimization (BBPSO) algorithm for feature selection in feature-level fusion target recognition system. In addition  we introduce a new evaluating function as criterion function in BBPSO feature selection method. At the last  we utilized Leave-One-Out method to validate the proposed method. The experiment results show that the proposed algorithm improves classification accuracy by two percentage points  while the selected feature dimensions are less one dimension than original Particle Swarm Optimization approach with 16 original feature dimensions. 2009 IEEE.