中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
自动化研究所 [2]
长春光学精密机械与物... [1]
烟台海岸带研究所 [1]
采集方式
OAI收割 [4]
内容类型
期刊论文 [2]
会议论文 [1]
学位论文 [1]
发表日期
2022 [1]
2010 [2]
2009 [1]
学科主题
筛选
浏览/检索结果:
共4条,第1-4条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Multimodal Unknown Surface Material Classification and Its Application to Physical Reasoning
期刊论文
OAI收割
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 2022, 卷号: 18, 18, 期号: 7, 页码: 4406-4416, 4406-4416
作者:
Wei, Junhang
;
Cui, Shaowei
;
Hu, Jingyi
;
Hao, Peng
;
Wang, Shuo
  |  
收藏
  |  
浏览/下载:48/0
  |  
提交时间:2022/06/10
Robots
Robots
Convolutional neural networks
Visualization
Informatics
Feature extraction
Task analysis
Haptic interfaces
Auditory and haptic information
deep learning
multimodal fusion
physical reasoning
unknown surface material classification (USMC)
Convolutional neural networks
Visualization
Informatics
Feature extraction
Task analysis
Haptic interfaces
Auditory and haptic information
deep learning
multimodal fusion
physical reasoning
unknown surface material classification (USMC)
图像目标检测与识别技术研究
学位论文
OAI收割
工学博士, 中国科学院自动化研究所: 中国科学院研究生院, 2010
作者:
夏晓珍
收藏
  |  
浏览/下载:225/0
  |  
提交时间:2015/09/02
目标检测与识别
分类识别
图像检索
局部特征
目标匹配
部件结构
级联分类器
多信息融合
语义上下文
广告分类
object detection and recognition
category recognition
image retrieval
local feature
object matching
part-based structure
cascade classifier
multi-information fusion
semantic context
ads classification
基于支持向量机遥感图像融合分类方法研究进展
期刊论文
OAI收割
安徽农业科学, 2010, 卷号: 38, 期号: 17, 页码: 9235-9238
作者:
郭立萍
;
唐家奎
;
米素娟
;
张成雯
;
赵理君
  |  
收藏
  |  
浏览/下载:2/0
  |  
提交时间:2024/05/07
Remote sensing image
Information abstraction
Fusion and classification
Support vector machine
遥感图像
信息提取
融合分类
支持向量机
Using bidirectional binary particle swarm optimization for feature selection in feature-level fusion recognition system (EI CONFERENCE)
会议论文
OAI收割
2009 4th IEEE Conference on Industrial Electronics and Applications, ICIEA 2009, May 25, 2009 - May 27, 2009, Xi'an, China
作者:
Wang D.
;
Wang Y.
;
Wang Y.
;
Wang Y.
;
Wang Y.
收藏
  |  
浏览/下载:24/0
  |  
提交时间:2013/03/25
In feature-level fusion recognition system
the other is optimizing system sensor design to get outstanding cost performance. So feature selection become usually necessary to reduce dimensionality of the combination of multi-sensor features and improve system performance in system design. In general
there are two main missions. One is improving the recognition correct rate as soon as possible
the optimization is usually applied to feature selection because of its computational feasibility and validity. For further improving recognition accuracy and reducing selected feature dimensions
this paper presents a more rational and accurate optimization
Bidirectional Binary Particle Swarm Optimization (BBPSO) algorithm for feature selection in feature-level fusion target recognition system. In addition
we introduce a new evaluating function as criterion function in BBPSO feature selection method. At the last
we utilized Leave-One-Out method to validate the proposed method. The experiment results show that the proposed algorithm improves classification accuracy by two percentage points
while the selected feature dimensions are less one dimension than original Particle Swarm Optimization approach with 16 original feature dimensions. 2009 IEEE.