中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
长春光学精密机械与物... [1]
数学与系统科学研究院 [1]
自动化研究所 [1]
沈阳自动化研究所 [1]
采集方式
OAI收割 [4]
内容类型
期刊论文 [3]
会议论文 [1]
发表日期
2022 [1]
2020 [1]
2019 [1]
2012 [1]
学科主题
筛选
浏览/检索结果:
共4条,第1-4条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Deep Neural Network Self-Distillation Exploiting Data Representation Invariance
期刊论文
OAI收割
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 卷号: 33, 期号: 1, 页码: 257-269
作者:
Xu, Ting-Bing
;
Liu, Cheng-Lin
  |  
收藏
  |  
浏览/下载:31/0
  |  
提交时间:2022/02/16
Training
Nonlinear distortion
Data models
Neural networks
Knowledge engineering
Network architecture
Generalization error
network compression
representation invariance
self-distillation (SD)
Quantifying the generalization error in deep learning in terms of data distribution and neural network smoothness
期刊论文
OAI收割
NEURAL NETWORKS, 2020, 卷号: 130, 页码: 85-99
作者:
Jin, Pengzhan
;
Lu, Lu
;
Tang, Yifa
;
Karniadakis, George Em
  |  
收藏
  |  
浏览/下载:31/0
  |  
提交时间:2021/01/14
Neural networks
Generalization error
Learnability
Data distribution
Cover complexity
Neural network smoothness
Rescaled Boosting in Classification
期刊论文
OAI收割
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2019, 卷号: 30, 期号: 9, 页码: 2598-2610
作者:
Wang Y(王尧)
;
Liao, Xu
;
Lin SB(林绍波)
  |  
收藏
  |  
浏览/下载:21/0
  |  
提交时间:2019/09/15
Boosting
generalization error
numerical convergence rate
resealed boosting (RBoosting)
Tracking error modeling of the theodolite based on GRNN method (EI CONFERENCE)
会议论文
OAI收割
2nd International Conference on Frontiers of Manufacturing and Design Science, ICFMD 2011, December 11, 2011 - December 13, 2011, Taichung, Taiwan
作者:
Li M.
收藏
  |  
浏览/下载:22/0
  |  
提交时间:2013/03/25
To meet the requirement of high tracking accuracy as well as develop more reasonable evaluation method
in this paper
the General Regression Neural Network (GRNN) has been applied to build the tracking error model of the theodolite. First
we analyze the nonlinear factors in the theodolite. Second
we discuss the principle of GRNN
including its structure
the function as well as its priors. Third
we build the tracking error model based on GRNN and verify the model through the different parameters. The result indicated that the network model based on GRNN has high accuracy and good generalization ability. It could instead the real system to a certain extent. The research in this paper has important value to the engineering practice.