中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
数学与系统科学研究院 [3]
力学研究所 [2]
自动化研究所 [2]
武汉物理与数学研究所 [1]
西安光学精密机械研究... [1]
采集方式
OAI收割 [9]
内容类型
期刊论文 [9]
发表日期
2024 [1]
2017 [1]
2016 [1]
2015 [1]
2009 [1]
2008 [1]
更多
学科主题
Computer S... [1]
筛选
浏览/检索结果:
共9条,第1-9条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
提交时间升序
提交时间降序
作者升序
作者降序
题名升序
题名降序
发表日期升序
发表日期降序
Hyperbolic Tangent Function-Based Protocols for Global/Semi-Global Finite-Time Consensus of Multi-Agent Systems
期刊论文
OAI收割
IEEE/CAA Journal of Automatica Sinica, 2024, 卷号: 11, 期号: 6, 页码: 1381-1397
作者:
Zongyu Zuo
;
Jingchuan Tang
;
Ruiqi Ke
;
Qing-Long Han
  |  
收藏
  |  
浏览/下载:23/0
  |  
提交时间:2024/05/22
Consensus protocol
finite-time consensus
hyperbolic tangent function
multi-agent systems
Modeling and control of Takagi-Sugeno fuzzy hyperbolic model for a class of nonlinear systems
期刊论文
OAI收割
JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2017, 卷号: 33, 期号: 6, 页码: 3265-3273
作者:
Li, Junmin
;
Wang, Jiaxian
;
Chen, Minglai(陈明徕)
;
Li, JM (reprint author), Xidian Univ, Sch Math & Stat, Xian 710071, Shaanxi, Peoples R China.
  |  
收藏
  |  
浏览/下载:35/0
  |  
提交时间:2017/12/30
Nonlinear Systems
T-s Fuzzy Hyperbolic Model
Small Control Amplitude
Fuzzy Control
Linear Matrix Inequalities (Lmis)
Fuzzy-Based Goal Representation Adaptive Dynamic Programming
期刊论文
OAI收割
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2016, 卷号: 24, 期号: 5, 页码: 1159-1175
作者:
Tang, Yufei
;
He, Haibo
;
Ni, Zhen
;
Zhong, Xiangnan
;
Zhao, Dongbin
  |  
收藏
  |  
浏览/下载:33/0
  |  
提交时间:2017/02/14
Adaptive Dynamic Programming (Adp)
Fuzzy Hyperbolic Model (Fhm)
Goal Representation Adaptive Dynamic Programming (Gradp)
Internal Goal Representation
Multimachine Power Systems
Stability Analysis
Vanishing viscosity of isentropic Navier-Stokes equations for interacting shocks
期刊论文
OAI收割
SCIENCE CHINA-MATHEMATICS, 2015, 卷号: 58, 期号: 4, 页码: 653-672
作者:
Huang FeiMin
;
Wang Yi
;
Wang Yong
;
Yang Tong
  |  
收藏
  |  
浏览/下载:129/0
  |  
提交时间:2021/01/14
NONLINEAR HYPERBOLIC SYSTEMS
ZERO-DISSIPATION LIMIT
CONSERVATION-LAWS
RAREFACTION WAVES
EULER EQUATIONS
BOLTZMANN-EQUATION
CONVERGENCE RATE
GAS-DYNAMICS
APPROXIMATIONS
STABILITY
isentropic Navier-Stokes equations
isentropic Euler equations
interacting shock
vanishing viscosity
entropy solution
High Order Multi-Moment Constrained Finite Volume Method. Part I: Basic Formulation
期刊论文
OAI收割
Journal of Computational Physics, 2009, 卷号: 228, 期号: 10, 页码: 3669-3707
作者:
Satoshi I
;
Xiao F(肖锋)
;
Xiao F
收藏
  |  
浏览/下载:1362/140
  |  
提交时间:2009/08/03
Finite Volume Method
High-Order Accuracy
Multi-Moment
Hyperbolic Conservation Laws
Compact Stencil
Local Reconstruction
Spectral Difference Method
Hyperbolic Conservation-Laws
One-Dimensional Systems
Unstructured Grids Ii
Shallow-Water Model
Element Method
Efficient Implementation
Incompressible Flows
Unified Formulation
Riemann Solvers
A Multimoment Finite-Volume Shallow-Water Model On The Yin-Yang Overset Spherical Grid
期刊论文
OAI收割
Monthly Weather Review, 2008, 页码: 3066-3086
作者:
Li XL
;
Chen DH
;
Peng XD
;
Takahashi K
;
Xiao F(肖锋)
收藏
  |  
浏览/下载:1986/53
  |  
提交时间:2009/08/03
Semi-Lagrangian Integration
Numerical-Integration
Incompressible Flows
Unified Formulation
Hyperbolic Systems
Advection Scheme
Cubed Sphere
Equations
Transport
Tests
BV estimates of Lax-Friedrichs' scheme for a class of nonlinear hyperbolic conservation laws
期刊论文
OAI收割
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 卷号: 131, 期号: 4, 页码: 1257-1266
作者:
Yang, T
;
Zhao, HJ
;
Zhu, CJ
收藏
  |  
浏览/下载:36/0
  |  
提交时间:2015/12/03
hyperbolic systems of conservation laws
Lax-Friedrichs' scheme
BV estimates
The relaxing schemes for Hamilton-Jacobi equations
期刊论文
OAI收割
JOURNAL OF COMPUTATIONAL MATHEMATICS, 2001, 卷号: 19, 期号: 3, 页码: 231-240
作者:
Tang, HZ
;
Wu, HM
  |  
收藏
  |  
浏览/下载:18/0
  |  
提交时间:2018/07/30
the relaxing scheme
the relaxing systems
Hamilton-Jacobi equation
hyperbolic conservation laws
THE RELAXING SCHEMES FOR HAMILION-JACOBI EQUATIONS
期刊论文
OAI收割
计算数学:英文版, 2001, 卷号: 000, 期号: 003, 页码: 231-240
作者:
Tang Huazhong
;
Wu Huamu
  |  
收藏
  |  
浏览/下载:23/0
  |  
提交时间:2021/01/14
The
relaxing
scheme
The
relaxing
systems
Hamilton-Jacobi
equation
Hyperbolic
conservation
laws.