中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
自动化研究所 [4]
计算技术研究所 [2]
长春光学精密机械与物... [1]
新疆理化技术研究所 [1]
国家天文台 [1]
中国科学院大学 [1]
更多
采集方式
OAI收割 [12]
iSwitch采集 [1]
内容类型
期刊论文 [10]
会议论文 [2]
学位论文 [1]
发表日期
2020 [1]
2018 [1]
2017 [3]
2016 [1]
2014 [1]
2012 [1]
更多
学科主题
筛选
浏览/检索结果:
共13条,第1-10条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
A Comparison of Correlation Filter-Based Trackers and Struck Trackers
期刊论文
OAI收割
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2020, 卷号: 30, 期号: 9, 页码: 3106-3118
作者:
Wang, Jinqiao
;
Zheng, Linyu
;
Tang, Ming
;
Feng, Jiayi
  |  
收藏
  |  
浏览/下载:33/0
  |  
提交时间:2021/01/07
Correlation
Target tracking
Kernel
Support vector machines
Training
Optimization
Discrete Fourier transforms
Visual tracking
correlation filters
structured output SVM tracker
struck
ranking SVM tracker
Matrix-Regularized Multiple Kernel Learning via (r, p) Norms
期刊论文
OAI收割
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 卷号: 29, 期号: 10, 页码: 4997-5007
作者:
Han, Yina
;
Yang, Yixin
;
Li, Xuelong
;
Liu, Qingyu
;
Ma, Yuanliang
  |  
收藏
  |  
浏览/下载:47/0
  |  
提交时间:2018/10/23
Generalization Bound
Matrix Regularization
Multiple Kernel Learning (Mkl)
Support Vector Machine (Svm)
Highly Efficient Framework for Predicting Interactions Between Proteins
期刊论文
OAI收割
IEEE TRANSACTIONS ON CYBERNETICS, 2017, 卷号: 47, 期号: 3, 页码: 731-743
作者:
You, Zhu-Hong
;
Zhou, MengChu
;
Luo, Xin
;
Li, Shuai
  |  
收藏
  |  
浏览/下载:21/0
  |  
提交时间:2018/03/15
Big data
feature extraction
kernel extreme learning machine (K-ELM)
low-rank approximation (LRA)
protein-protein interactions (PPIs)
support vector machine (SVM)
Highly Efficient Framework for Predicting Interactions Between Proteins
期刊论文
OAI收割
IEEE TRANSACTIONS ON CYBERNETICS, 2017, 卷号: 47, 期号: 3, 页码: 731-743
作者:
You, ZH (You, Zhu-Hong)
;
Zhou, MC (Zhou, MengChu)
;
Luo, X (Luo, Xin)
;
Li, S (Li, Shuai)
收藏
  |  
浏览/下载:33/0
  |  
提交时间:2017/03/23
Big data
feature extraction
kernel extreme learning machine (K-ELM)
low-rank approximation (LRA)
protein-protein interactions (PPIs)
support vector machine (SVM)
Discriminating Bipolar Disorder from Major Depression Based on Kernel Svm Using Functional Independent Components
会议论文
OAI收割
Tokyo, Japan., 2017/9/25-28
作者:
Shuang Gao
;
Elizabeth A Osuch
;
Michael Wammes
;
Jean Théberge
;
Tianzi Jiang
  |  
收藏
  |  
浏览/下载:23/0
  |  
提交时间:2018/03/09
Independent Component Analysis
Linear Subspace
Kernel Svm
Bipolar Disorder
Major Depression Disorder
Fmri Data
Schizophrenia
Unipolar
Amygdala
Support vector analysis of large-scale data based on kernels with iteratively increasing order
期刊论文
OAI收割
JOURNAL OF SUPERCOMPUTING, 2016, 卷号: 72, 期号: 9, 页码: 3297-3311
作者:
Chen, Bo-Wei
;
He, Xinyu
;
Ji, Wen
;
Rho, Seungmin
;
Kung, Sun-Yuan
  |  
收藏
  |  
浏览/下载:21/0
  |  
提交时间:2019/12/13
Support vector analysis
Big data analysis
Kernel ridge regression (KRR)
Ridge support vector machine (Ridge SVM)
Kernel Density Estimation, Kernel Methods, and Fast Learning in Large Data Sets
期刊论文
OAI收割
IEEE TRANSACTIONS ON CYBERNETICS, 2014, 卷号: 44, 期号: 1, 页码: 1-20
Wang, Shitong
;
Wang, Jun
;
Chung, Fu-lai
  |  
收藏
  |  
浏览/下载:22/0
  |  
提交时间:2014/12/16
Kernel density estimate (KDE)
kernel methods
quadratic programming (QP)
sampling
support vector machine (SVM)
Classification of hyperspectral image based on SVM optimized by a new particle swarm optimization (EI CONFERENCE)
会议论文
OAI收割
2012 2nd International Conference on Remote Sensing, Environment and Transportation Engineering, RSETE 2012, June 1, 2012 - June 3, 2012, Nanjing, China
作者:
Gao X.
;
Yu P.
;
Yu P.
收藏
  |  
浏览/下载:20/0
  |  
提交时间:2013/03/25
Support Vector Machine (SVM) is used to classify hyperspectral remote sensing image in this paper. Radial Basis Function (RBF)
which is most widely used
is chosen as the kernel function of SVM. Selection of kernel function parameter is a pivotal factor which influences the performance of SVM. For this reason
Particle Swarm Optimization (PSO) is provided to get a better result. In order to improve the optimization efficiency of kernel function parameter
firstly larger steps of grid search method is used to find the appropriate rang of parameter. Since the PSO tends to be trapped into local optimal solutions
a weight and mutation particle swam optimization algorithm was proposed
in which the weight dynamically changes with a liner rule and the global best particle mutates per iteration to optimize the parameters of RBF-SVM. At last
a 220-bands hyperspectral remote sensing image of AVIRIS is taken as an experiment
which demonstrates that the method this paper proposed is an effective way to search the SVM parameters and is available in improving the performance of SVM classifiers. 2012 IEEE.
Kernel subclass convex hull sample selection method for svm on face recognition
期刊论文
iSwitch采集
Neurocomputing, 2010, 卷号: 73, 期号: 10-12, 页码: 2234-2246
作者:
Zhou, Xiaofei
;
Jiang, Wenhan
;
Tian, Yingjie
;
Shi, Yong
收藏
  |  
浏览/下载:44/0
  |  
提交时间:2019/05/10
Svm
Classification
Sample selection
Kernel
Face recognition
Building Sparse Multiple-Kernel SVM Classifiers
期刊论文
OAI收割
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2009, 卷号: 20, 期号: 5, 页码: 827-839
作者:
Hu, Mingqing
;
Chen, Yidiang
;
Kwok, James Tin-Yau
  |  
收藏
  |  
浏览/下载:19/0
  |  
提交时间:2019/12/16
Gradient projection
kernel methods
multiple-kernel learning (MKL)
sparsity
support vector machine (SVM)