中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
机构
采集方式
内容类型
发表日期
学科主题
筛选

浏览/检索结果: 共13条,第1-10条 帮助

条数/页: 排序方式:
Recommended risk screening values for Cd in high geological background area of Guangxi, China 期刊论文  OAI收割
ENVIRONMENTAL MONITORING AND ASSESSMENT, 2022, 卷号: 194, 期号: 3, 页码: 13
作者:  
Xiao, Naichuan;  Wang, Fopeng;  Tang, Lebin;  Zhu, Liangliang;  Song, Bo
  |  收藏  |  浏览/下载:31/0  |  提交时间:2022/09/21
On local quadratic convergence of inexact simplified Jacobi-Davidson method for interior eigenpairs of Hermitian eigenproblems 期刊论文  OAI收割
APPLIED MATHEMATICS LETTERS, 2017, 卷号: 72, 页码: 23-28
作者:  
Bai, Zhong-Zhi;  Miao, Cun-Qiang
  |  收藏  |  浏览/下载:19/0  |  提交时间:2018/07/30
On local quadratic convergence of inexact simplified Jacobi-Davidson method 期刊论文  OAI收割
LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 卷号: 520, 页码: 215-241
作者:  
Bai, Zhong-Zhi;  Miao, Cun-Qiang
  |  收藏  |  浏览/下载:19/0  |  提交时间:2018/07/30
A tracking method with structural local mean and local standard deviation appearance model 会议论文  OAI收割
全国模式识别学术会议(6th Chinese Conference on Pattern Recognition), 湖南长沙, 2014年11月17-19
作者:  
Yang DW(杨大为);  Cong Y(丛杨);  Tang YD(唐延东);  Li, Yulian
收藏  |  浏览/下载:46/0  |  提交时间:2014/12/29
Top quark and Higgs boson masses in supersymmetric models 期刊论文  OAI收割
JOURNAL OF HIGH ENERGY PHYSICS, 2014, 期号: 4, 页码: 109
作者:  
Gogoladze, I;  Khalid, R;  Raza, S;  Shafi, Q
收藏  |  浏览/下载:61/0  |  提交时间:2015/06/03
LHC Higgs signatures from extended electroweak gauge symmetry 期刊论文  OAI收割
JOURNAL OF HIGH ENERGY PHYSICS, 2013, 期号: 1, 页码: 82
Abe, T; Chen, N; He, HJ
收藏  |  浏览/下载:78/0  |  提交时间:2014/04/25
The Z plus photon and diphoton decays of the Higgs boson as a joint probe of low energy SUSY models 期刊论文  OAI收割
JOURNAL OF HIGH ENERGY PHYSICS, 2013, 期号: 9
作者:  
Yang, JM
收藏  |  浏览/下载:41/0  |  提交时间:2014/04/25
Regional effects of secondary ecological migration in pasturing area: A case of Fuhai county in Xinjiang 会议论文  OAI收割
2009 International Conference on Environmental Science and Information Application Technology, ESIAT, Wuhan, China, 2009
Changlong; Sun1; 2; Jia; Liu1; Xiaolei; Zhang1; Hongru; Du1; Wenwen; Ma3
收藏  |  浏览/下载:47/0  |  提交时间:2011/08/23
图像特征检测与匹配研究 学位论文  OAI收割
工学博士, 中国科学院自动化研究所: 中国科学院研究生院, 2008
作者:  
王志衡
收藏  |  浏览/下载:94/0  |  提交时间:2015/09/02
Real time tracking by LOPF algorithm with mixture model (EI CONFERENCE) 会议论文  OAI收割
MIPPR 2007: Automatic Target Recognition and Image Analysis; and Multispectral Image Acquisition, November 15, 2007 - November 17, 2007, Wuhan, China
Meng B.; Zhu M.; Han G.; Wu Z.
收藏  |  浏览/下载:39/0  |  提交时间:2013/03/25
A new particle filter-the Local Optimum Particle Filter (LOPF) algorithm is presented for tracking object accurately and steadily in visual sequences in real time which is a challenge task in computer vision field. In order to using the particles efficiently  we first use Sobel algorithm to extract the profile of the object. Then  we employ a new Local Optimum algorithm to auto-initialize some certain number of particles from these edge points as centre of the particles. The main advantage we do this in stead of selecting particles randomly in conventional particle filter is that we can pay more attentions on these more important optimum candidates and reduce the unnecessary calculation on those negligible ones  in addition we can overcome the conventional degeneracy phenomenon in a way and decrease the computational costs. Otherwise  the threshold is a key factor that affecting the results very much. So here we adapt an adaptive threshold choosing method to get the optimal Sobel result. The dissimilarities between the target model and the target candidates are expressed by a metric derived from the Bhattacharyya coefficient. Here  we use both the counter cue to select the particles and the color cur to describe the targets as the mixture target model. The effectiveness of our scheme is demonstrated by real visual tracking experiments. Results from simulations and experiments with real video data show the improved performance of the proposed algorithm when compared with that of the standard particle filter. The superior performance is evident when the target encountering the occlusion in real video where the standard particle filter usually fails.