中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
地理科学与资源研究所 [2]
成都山地灾害与环境研... [1]
长春光学精密机械与物... [1]
武汉植物园 [1]
生态环境研究中心 [1]
西安光学精密机械研究... [1]
更多
采集方式
OAI收割 [8]
内容类型
期刊论文 [6]
SCI/SSCI论文 [1]
会议论文 [1]
发表日期
2024 [1]
2022 [1]
2017 [1]
2016 [1]
2015 [1]
2012 [1]
更多
学科主题
筛选
浏览/检索结果:
共8条,第1-8条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
发表日期升序
发表日期降序
提交时间升序
提交时间降序
作者升序
作者降序
Source identification and risk assessment of trace metals in surface sediment of China Sea by combining APCA-MLR receptor model and lead isotope analysis
期刊论文
OAI收割
JOURNAL OF HAZARDOUS MATERIALS, 2024, 卷号: 465, 页码: 13
作者:
Zhou, Yanyan
;
Du, Sen
;
Liu, Yang
;
Yang, Tao
;
Liu, Yongliang
  |  
收藏
  |  
浏览/下载:17/0
  |  
提交时间:2024/10/28
China Sea
Sediment
Trace metals
APCS-MLR model
Pb isotope
Receptor model-based source apportionment and ecological risk of metals in sediments of an urban river in Bangladesh
期刊论文
OAI收割
JOURNAL OF HAZARDOUS MATERIALS, 2022, 卷号: 423, 页码: 15
作者:
Proshad, Ram
;
Kormoker, Tapos
;
Al, Mamun Abdullah
;
Islam, Md Saiful
;
Khadka, Sujan
  |  
收藏
  |  
浏览/下载:84/0
  |  
提交时间:2021/12/16
Toxic metals
Riverine sediments
PMF model
APCS-MLR model
Ecological risk
Using MLR to model the vertical error distribution of ASTER GDEM V2 data based on ICESat/GLA14 data in the Loess Plateau of China
期刊论文
OAI收割
ZEITSCHRIFT FUR GEOMORPHOLOGIE, 2017, 卷号: 61, 页码: 9-26
作者:
Zhao, Shangmin
;
Cheng, Weiming
;
Zhou, Chenghu
;
Liu, Haijiang
;
Su, Qiaomei
  |  
收藏
  |  
浏览/下载:93/0
  |  
提交时间:2019/05/30
vertical error distribution
MLR model
ASTER GDEM V2
ICESat/GLA14
land surface factors
Mapping soil organic matter concentration at different scales using a mixed geographically weighted regression method
SCI/SSCI论文
OAI收割
2016
作者:
Zeng C. Y.
收藏
  |  
浏览/下载:62/0
  |  
提交时间:2016/12/16
Mixed geographically weighted regression (MGWR)
Geographically weighted
regression (GWR)
Multiple linear regression (MLR)
Soil organic matter
concentration (SOM)
multiple-linear-regression
spatial prediction
auxiliary information
carbon
variables
patterns
region
model
catchment
australia
Multiple linear regression model for bromate formation based on the survey data of source waters from geographically different regions across China
期刊论文
OAI收割
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2015, 卷号: 22, 期号: 2, 页码: 1232-1239
作者:
Yu, Jianwei
;
Liu, Juan
;
An, Wei
;
Wang, Yongjing
;
Zhang, Junzhi
收藏
  |  
浏览/下载:18/0
  |  
提交时间:2016/03/11
Bromate formation potential
Ozonation
Alkalinity
Drinking water
MLR model
Multivariate Multilinear Regression
期刊论文
OAI收割
ieee transactions on systems man and cybernetics part b-cybernetics, 2012, 卷号: 42, 期号: 6, 页码: 1560-1573
作者:
Su, Ya
;
Gao, Xinbo
;
Li, Xuelong
;
Tao, Dacheng
收藏
  |  
浏览/下载:32/0
  |  
提交时间:2013/07/01
Active appearance model (AAM)
multivariate linear regression (MLR)
principal component regression (PCR)
under sample problem (USP)
Response of dissolved trace metals to land use/land cover and their source apportionment using a receptor model in a subtropic river, China
期刊论文
OAI收割
JOURNAL OF HAZARDOUS MATERIALS, 2011, 卷号: 190, 期号: 1-3, 页码: 205-213
作者:
Li, Siyue
;
Zhang, Quanfa
  |  
收藏
  |  
浏览/下载:22/0
  |  
提交时间:2017/04/13
Land use/land cover
Trace metals
Source apportionment
Multivariate statistic model
FA-MLR
Fast determination of total ginsenosides content in Ginseng powder by near infrared reflectance spectroscopy (EI CONFERENCE)
会议论文
OAI收割
ICO20: Biomedical Optics, August 21, 2005 - August 26, 2005, Changchun, China
作者:
Chen X.-D.
;
Chen X.-D.
收藏
  |  
浏览/下载:29/0
  |  
提交时间:2013/03/25
Near infrared (NIR) reflectance spectroscopy was used to develop a fast determination method for total ginsenosides in Ginseng (Panax Ginseng) powder. The spectra were analyzed with multiplicative signal correction (MSC) correlation method. The best correlative spectra region with the total ginsenosides content was 1660 nm1880 nm and 2230nm-2380 nm. The NIR calibration models of ginsenosides were built with multiple linear regression (MLR)
principle component regression (PCR) and partial least squares (PLS) regression respectively. The results showed that the calibration model built with PLS combined with MSC and the optimal spectrum region was the best one. The correlation coefficient and the root mean square error of correction validation (RMSEC) of the best calibration model were 0.98 and 0.15% respectively. The optimal spectrum region for calibration was 1204nm-2014nm. The result suggested that using NIR to rapidly determinate the total ginsenosides content in ginseng powder were feasible.