中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
自动化研究所 [2]
力学研究所 [1]
地理科学与资源研究所 [1]
长春光学精密机械与物... [1]
海洋研究所 [1]
采集方式
OAI收割 [6]
内容类型
期刊论文 [4]
会议论文 [2]
发表日期
2024 [1]
2021 [1]
2020 [2]
2019 [1]
2008 [1]
学科主题
筛选
浏览/检索结果:
共6条,第1-6条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Modelling Soil δ
13
C across the Tibetan Plateau Using Deep-Learning
期刊论文
OAI收割
JOURNAL OF ENVIRONMENTAL INFORMATICS, 2024, 卷号: 44, 期号: 1, 页码: 48-60
作者:
Zhou, T.
;
Lai, Y. S.
;
Yang, Z. H.
;
Shi, Y. H.
;
Luo, X. R.
  |  
收藏
  |  
浏览/下载:4/0
  |  
提交时间:2024/10/08
soil delta C-13
spatial variability
multi-layer perceptron neural network
soil carbon turnover
Tibetan Plateau
biogeochemical cycles
biogeochemical cycles
Estimation of Significant Wave Heights from ASCAT Scatterometer Data via Deep Learning Network
期刊论文
OAI收割
REMOTE SENSING, 2021, 卷号: 13, 期号: 2, 页码: 18
作者:
Wang, He
;
Yang, Jingsong
;
Zhu, Jianhua
;
Ren, Lin
;
Liu, Yahao
  |  
收藏
  |  
浏览/下载:51/0
  |  
提交时间:2021/04/21
Advanced Scatterometer (ASCAT)
significant wave height
WaveWatch III
deep learning
multi-hidden-layer neural network
Adaptive Synchronization of Delayed Memristive Neural Networks With Unknown Parameters
期刊论文
OAI收割
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2020, 卷号: 50, 期号: 2, 页码: 539-549
作者:
Yang, Zhanyu
;
Luo, Biao
;
Liu, Derong
;
Li, Yueheng
  |  
收藏
  |  
浏览/下载:38/0
  |  
提交时间:2020/03/30
Synchronization
Biological neural networks
Neurons
Adaptive systems
Multi-layer neural network
Memristors
Adaptive control
delayed memristive neural networks
global asymptotic synchronization
unknown parameters
Accurate Classification of EEG Signals Using Neural Networks Trained by Hybrid Population-physic-based Algorithm
期刊论文
OAI收割
International Journal of Automation and Computing, 2020, 卷号: 17, 期号: 1, 页码: 108-122
作者:
Sajjad Afrakhteh
;
Mohammad-Reza Mosavi
;
Mohammad Khishe
;
Ahmad Ayatollahi
  |  
收藏
  |  
浏览/下载:21/0
  |  
提交时间:2021/02/22
Brain-computer interface (BCI)
classification
electroencephalography (EEG)
gravitational search algorithm (GSA)
multi-layer perceptron neural network (MLP-NN)
particle swarm optimization.
Reconstruction of RANS model and cross-validation of flow field based on tensor basis neural network
会议论文
OAI收割
San Francisco, CA, United states, July 28, 2019 - August 1, 2019
作者:
Song XD
;
Zhang Z(张珍)
;
Wang YW(王一伟)
;
Ye SR(叶舒然)
;
Huang CG(黄晨光)
  |  
收藏
  |  
浏览/下载:89/0
  |  
提交时间:2020/11/20
Cross-validation
Multi-layer neural network
Reynolds stress
Turbulence model
A MLP-PNN neural network for CCD image super-resolution in wavelet packet domain (EI CONFERENCE)
会议论文
OAI收割
2008 International Conference on Wireless Communications, Networking and Mobile Computing, WiCOM 2008, October 12, 2008 - October 14, 2008, Dalian, China
Zhao X.
;
Fu D.
;
Zhai L.
收藏
  |  
浏览/下载:68/0
  |  
提交时间:2013/03/25
Image super-resolution methods process an input image sequence of a scene to obtain a still image with increased resolution. Classical approaches to this problem involve complex iterative minimization procedures
typically with high computational costs. In this paper is proposed a novel algorithm for super-resolution that enables a substantial decrease in computer load. First
decompose and reconstruct the image by wavelet packet. Before constructing the image
use neural network in place of other rebuilding method to reconstruct the coefficients in the wavelet packet domain. Second
probabilistic neural network architecture is used to perform a scattered-point interpolation of the image sequence data in the wavelet packet domain. The network kernel function is optimally determined for this problem by a MLP-PNN (Multi Layer Perceptron - Probabilistic Neural Network) trained on synthetic data. Network parameters dependent on the sequence noise level. This super-sampled image is spatially Altered to correct finite pixel size effects
to yield the final high-resolution estimate. This method can decrease the calculation cost and get perfect PSNR. Results are presented
showing the quality of the proposed method. 2008 IEEE.