中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
新疆生态与地理研究所 [2]
地理科学与资源研究所 [1]
长春光学精密机械与物... [1]
自动化研究所 [1]
采集方式
OAI收割 [5]
内容类型
会议论文 [2]
期刊论文 [2]
学位论文 [1]
发表日期
2023 [2]
2019 [1]
2010 [1]
2009 [1]
学科主题
测绘工程 [1]
筛选
浏览/检索结果:
共5条,第1-5条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
发表日期升序
发表日期降序
提交时间升序
提交时间降序
作者升序
作者降序
OPM2L: An optimal instance partition-based multi-metric learning method for heterogeneous dataset classification
期刊论文
OAI收割
INFORMATION SCIENCES, 2023, 卷号: 648, 页码: 18
作者:
Deng, Huiyuan
;
Meng, Xiangzhu
;
Wang, Huibing
;
Feng, Lin
  |  
收藏
  |  
浏览/下载:22/0
  |  
提交时间:2023/11/16
Multi-metric learning
Alternating direction method
Nearest-neighbor classification
Riemannian manifold
Identifying Tree Species in a Warm-Temperate Deciduous Forest by Combining Multi-Rotor and Fixed-Wing Unmanned Aerial Vehicles
期刊论文
OAI收割
DRONES, 2023, 卷号: 7, 期号: 6, 页码: 353
作者:
Shi, Weibo
;
Wang, Shaoqiang
;
Yue, Huanyin
;
Wang, Dongliang
;
Ye, Huping
  |  
收藏
  |  
浏览/下载:20/0
  |  
提交时间:2023/08/22
fixed-wing UAVs
multi-rotor UAVs
semantic segmentation method
tree species classification
forest inventory
基于多源遥感数据的塔里木河下游植被变化监测
学位论文
OAI收割
北京: 中国科学院大学, 2019
作者:
肖昊
  |  
收藏
  |  
浏览/下载:72/0
  |  
提交时间:2021/12/10
塔里木河下游
植被格局时空变化
植被长势监测
SAVI 时序数据
多方法分类
Lower Reaches of Tarim River
Spatio-Temporal Change of Vegetation Pattern
Monitoring of Vegetation Growth
SAVI Time Series Data
Multi-method Classification
Improvement of urban land use and land cover classification approach in arid areas
会议论文
OAI收割
Proceedings of SPIE - The International Society for Optical Engineering, Image and Signal Processing for Remote Sensing XVI, Toulouse, France, 2010
Qian
;
Jing1
;
2
;
Zhou
;
Qiming1
;
Chen
;
Xi2
收藏
  |  
浏览/下载:38/0
  |  
提交时间:2011/08/23
Arid regions - Image analysis - Image classification - Land use - Landforms - Maximum likelihood - Photography - Pixels - Remote sensing - Signal processing - Aerial Photographs - Arid area - Bare soils - Beijing-1 - Built-up areas - Classification approach - Classification results - Construction materials - Data sets - Discrete elements - Extraction accuracy - Field investigation - High resolution image - Land-cover types - Landsat ETM - Maximum likelihood classifications - Mixed pixel - Multi-sensor data - Object oriented - object-oriented classification method - Object-oriented processing - Spectral characteristics - Stony deserts - Urban areas - Urban change detection - Urban environments - Urban land use
Using bidirectional binary particle swarm optimization for feature selection in feature-level fusion recognition system (EI CONFERENCE)
会议论文
OAI收割
2009 4th IEEE Conference on Industrial Electronics and Applications, ICIEA 2009, May 25, 2009 - May 27, 2009, Xi'an, China
作者:
Wang D.
;
Wang Y.
;
Wang Y.
;
Wang Y.
;
Wang Y.
收藏
  |  
浏览/下载:27/0
  |  
提交时间:2013/03/25
In feature-level fusion recognition system
the other is optimizing system sensor design to get outstanding cost performance. So feature selection become usually necessary to reduce dimensionality of the combination of multi-sensor features and improve system performance in system design. In general
there are two main missions. One is improving the recognition correct rate as soon as possible
the optimization is usually applied to feature selection because of its computational feasibility and validity. For further improving recognition accuracy and reducing selected feature dimensions
this paper presents a more rational and accurate optimization
Bidirectional Binary Particle Swarm Optimization (BBPSO) algorithm for feature selection in feature-level fusion target recognition system. In addition
we introduce a new evaluating function as criterion function in BBPSO feature selection method. At the last
we utilized Leave-One-Out method to validate the proposed method. The experiment results show that the proposed algorithm improves classification accuracy by two percentage points
while the selected feature dimensions are less one dimension than original Particle Swarm Optimization approach with 16 original feature dimensions. 2009 IEEE.