中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
沈阳自动化研究所 [3]
自动化研究所 [2]
地理科学与资源研究所 [1]
长春光学精密机械与物... [1]
数学与系统科学研究院 [1]
采集方式
OAI收割 [8]
内容类型
会议论文 [4]
期刊论文 [4]
发表日期
2023 [1]
2022 [2]
2020 [1]
2009 [1]
2007 [2]
2006 [1]
更多
学科主题
筛选
浏览/检索结果:
共8条,第1-8条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Accurate estimation of surface water volume in tufa lake group using UAV-captured imagery and ANNs
期刊论文
OAI收割
MEASUREMENT, 2023, 卷号: 220, 页码: 10
作者:
He, Jinchen
;
Lin, Jiayuan
;
Zhang, Xianwei
;
Liao, Xiaohan
  |  
收藏
  |  
浏览/下载:20/0
  |  
提交时间:2023/10/09
Tufa lake group
Surface water volume
Unmanned aerial vehicle (UAV)
Bathymetry
Artificial neural network (ANN)
A Novel Attention-based Global and Local Information Fusion Neural Network for Group Recommendation
期刊论文
OAI收割
Machine Intelligence Research, 2022, 卷号: 19, 期号: 4, 页码: 331-346
作者:
Song Zhang
;
Nan Zheng
;
Dan-Li Wang
  |  
收藏
  |  
浏览/下载:14/0
  |  
提交时间:2024/04/23
Group recommendation
attentive neural network (ANN)
global information
local information
recommender system
Glaucoma Detection with Retinal Fundus Images Using Segmentation and Classification
期刊论文
OAI收割
Machine Intelligence Research, 2022, 卷号: 19, 期号: 6, 页码: 563-580
作者:
Thisara Shyamalee
;
Dulani Meedeniya
  |  
收藏
  |  
浏览/下载:10/0
  |  
提交时间:2024/04/23
Attention U-Net
segmentation
classification
Inception-v3
visual geometry group 19 (VGG19)
residual neural network 50 (ResNet50)
glaucoma
fundus images
Circular Complex-Valued GMDH-Type Neural Network for Real-Valued Classification Problems
期刊论文
OAI收割
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 卷号: 31, 期号: 12, 页码: 5285-5299
作者:
Xiao, Jin
;
Jia, Yanlin
;
Jiang, Xiaoyi
;
Wang, Shouyang
  |  
收藏
  |  
浏览/下载:38/0
  |  
提交时间:2021/04/26
Biological system modeling
Data models
Biological neural networks
Predictive models
Neurons
Mathematical model
Complex-valued external criterion
complex-valued group method of data handling (GMDH)-type neural network
parameter estimation
real-valued classification
A Multi-layered Dynamic Neural Group Method for Characteristic Patterns Identification and Prediction of Complex Event Series
会议论文
OAI收割
Bangkok, THAILAND, February 22-25, 2009
作者:
Li X(李响)
;
Wang YC(王越超)
;
Li HY(李洪谊)
  |  
收藏
  |  
浏览/下载:18/0
  |  
提交时间:2012/06/06
Neural Group Network
Multi-layered
Characteristic Identification
Evaluation Strategy
Event Series
Ant colony algorithm and fuzzy neural network-based intelligent dispatching algorithm of an elevator group control system
会议论文
OAI收割
IEEE International Conference on Control and Automation, Guangzhou, China, May 30 - June 1, 2007
作者:
Liu, Jianchang
;
Liu YY(刘意杨)
收藏
  |  
浏览/下载:18/0
  |  
提交时间:2012/06/06
elevator group control
ant colony algorithm
fuzzy neural network
intelligent dispatching
Behavior selection and coordination of the Internet-based multi-robot teleoperation system by a neural group network approach
会议论文
OAI收割
IEEE International Conference on Robotics and Biomimetics (ROBIO 2007), Sanya, China, December 15-18, 2007
作者:
Li X(李响)
;
Wang YC(王越超)
收藏
  |  
浏览/下载:30/0
  |  
提交时间:2012/06/06
neural group network
Internet
multi-robot
evaluation strategy
behavior coordination
A model of threat assessment based on discrete hopfield neural network (EI CONFERENCE)
会议论文
OAI收割
6th World Congress on Intelligent Control and Automation, WCICA 2006, June 21, 2006 - June 23, 2006, Dalian, China
Changqing K.
;
Lihong G.
收藏
  |  
浏览/下载:19/0
  |  
提交时间:2013/03/25
A model of air strike target threat assessment based on Discrete Hopfield Neural Network (DHNN) was proposed. Analytic Hierarchy Process (AHP) was presented to obtain threat index weight. All neurons in the neural network were divided into a certain number of groups according to threat index weight. Each group of neurons corresponded to one threat index
and the problem of how to express weight in the neural network was solved. Target threat levels were given by DHNN according to target patterns. An example shows that neural network has real -time ability and is able to obtain real threat levels. 2006 IEEE.