中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
自动化研究所 [5]
长春光学精密机械与物... [3]
南海海洋研究所 [2]
计算技术研究所 [1]
过程工程研究所 [1]
青岛生物能源与过程研... [1]
更多
采集方式
OAI收割 [16]
iSwitch采集 [1]
内容类型
期刊论文 [9]
会议论文 [5]
学位论文 [3]
发表日期
2021 [2]
2018 [1]
2015 [3]
2014 [1]
2012 [1]
2011 [1]
更多
学科主题
Oceanograp... [2]
筛选
浏览/检索结果:
共17条,第1-10条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Particle Filter Reinforcement via Context-Sensing for Smartphone-Based Pedestrian Dead Reckoning
期刊论文
OAI收割
IEEE COMMUNICATIONS LETTERS, 2021, 卷号: 25, 期号: 9, 页码: 3144-3148
作者:
Shao, Wenhua
;
Zhao, Fang
;
Luo, Haiyong
;
Tian, Hui
;
Li, Jiaxin
  |  
收藏
  |  
浏览/下载:45/0
  |  
提交时间:2021/12/01
Particle filters
Neural networks
Reinforcement learning
Mathematical model
Particle measurements
Estimation
Atmospheric measurements
Indoor location tracking
particle filter
pedestrian dead reckoning
reinforcement learning
smartphone-based navigation
Assessing the contribution of groundwater to catchment travel time distributions through integrating conceptual flux tracking with explicit Lagrangian particle tracking
期刊论文
OAI收割
ADVANCES IN WATER RESOURCES, 2021, 卷号: 149, 页码: 18
作者:
Jing, Miao
;
Kumar, Rohini
;
Attinger, Sabine
;
Li, Qi
;
Lu, Chunhui
  |  
收藏
  |  
浏览/下载:27/0
  |  
提交时间:2021/05/25
Travel time distribution
Flux tracking
Particle tracking
Coupled model
Predictive uncertainty
Scale-dependent nonequilibrium features in a bubbling fluidized bed
期刊论文
OAI收割
AICHE JOURNAL, 2018, 卷号: 64, 期号: 7, 页码: 2364, 2378
作者:
Wang, HF
;
Chen, YP
;
Wang, W
;
Wang, Haifeng
;
Chen, Yanpei
  |  
收藏
  |  
浏览/下载:37/0
  |  
提交时间:2018/12/29
experiment
GAS-SOLID FLOWS
particle tracking velocimetry (PTV)
NEAR-WALL REGION
gas-solid fluidization
VELOCITY DISTRIBUTIONS
meso-scale
PARTICLE-MOTION
spatio-temporal structure
MULTISCALE CFD
GRANULAR FLOWS
KINETIC-THEORY
MODEL
SIMULATION
RISER
Giant jellyfish Nemopilema nomurai gathering in the Yellow Sea-a numerical study
期刊论文
OAI收割
JOURNAL OF MARINE SYSTEMS, 2015, 卷号: 144, 页码: 107-116
作者:
Wei, Hao
;
Deng, Lijing
;
Wang, Yuheng
;
Zhao, Liang
;
Li, Xia
收藏
  |  
浏览/下载:33/0
  |  
提交时间:2015/06/15
Giant jellyfish
Nemopilema nomurai
Fall gathering
Inter-annual variation
Particle tracking model
Yellow Sea
Contribution of the Karimata Strait transport to the Indonesian Throughflow as seen from a data assimilation model
期刊论文
OAI收割
CONTINENTAL SHELF RESEARCH, 2015, 卷号: 92, 页码: 16-22
作者:
He, Zhigang
;
Feng, Ming
;
Wang, Dongxiao
;
Slawinski, Dirk
收藏
  |  
浏览/下载:27/0
  |  
提交时间:2016/11/02
South China Sea
Numerical model
Particle tracking
Indonesian Throughflow
Contribution of the Karimata Strait transport to the Indonesian Throughflow as seen from a data assimilation model
期刊论文
OAI收割
CONTINENTAL SHELF RESEARCH, 2015, 卷号: 92, 页码: 16-22
作者:
He, Zhigang
;
Feng, Ming
;
Wang, Dongxiao
;
Slawinski, Dirk
收藏
  |  
浏览/下载:24/0
  |  
提交时间:2016/11/02
South China Sea
Numerical model
Particle tracking
Indonesian Throughflow
Robust visual tracking of infrared object via sparse representation model
会议论文
OAI收割
International Symposium on Optoelectronic Technology and Application 2014, Beijing, China, May 13-15, 2014
作者:
Ma JK(马俊凯)
;
Luo HB(罗海波)
;
Chang Z(常铮)
;
Hui B(惠斌)
收藏
  |  
浏览/下载:26/0
  |  
提交时间:2014/12/29
Sparse representation
Target tracking
Appearance model
Robust tracking
Particle lter
Real-Time Probabilistic Covariance Tracking With Efficient Model Update
期刊论文
OAI收割
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 卷号: 21, 期号: 5, 页码: 2824-2837
作者:
Wu, Yi
;
Cheng, Jian
;
Wang, Jinqiao
;
Lu, Hanqing
;
Wang, Jun
收藏
  |  
浏览/下载:33/0
  |  
提交时间:2015/08/12
Covariance descriptor
incremental learning
model update
particle filter
Riemannian manifolds
visual tracking
The new approach for infrared target tracking based on the particle filter algorithm (EI CONFERENCE)
会议论文
OAI收割
International Symposium on Photoelectronic Detection and Imaging 2011: Advances in Infrared Imaging and Applications, May 24, 2011 - May 24, 2011, Beijing, China
作者:
Sun H.
;
Han H.-X.
;
Sun H.
收藏
  |  
浏览/下载:56/0
  |  
提交时间:2013/03/25
Target tracking on the complex background in the infrared image sequence is hot research field. It provides the important basis in some fields such as video monitoring
precision
and video compression human-computer interaction. As a typical algorithms in the target tracking framework based on filtering and data connection
the particle filter with non-parameter estimation characteristic have ability to deal with nonlinear and non-Gaussian problems so it were widely used. There are various forms of density in the particle filter algorithm to make it valid when target occlusion occurred or recover tracking back from failure in track procedure
but in order to capture the change of the state space
it need a certain amount of particles to ensure samples is enough
and this number will increase in accompany with dimension and increase exponentially
this led to the increased amount of calculation is presented. In this paper particle filter algorithm and the Mean shift will be combined. Aiming at deficiencies of the classic mean shift Tracking algorithm easily trapped into local minima and Unable to get global optimal under the complex background. From these two perspectives that "adaptive multiple information fusion" and "with particle filter framework combining"
we expand the classic Mean Shift tracking framework.Based on the previous perspective
we proposed an improved Mean Shift infrared target tracking algorithm based on multiple information fusion. In the analysis of the infrared characteristics of target basis
Algorithm firstly extracted target gray and edge character and Proposed to guide the above two characteristics by the moving of the target information thus we can get new sports guide grayscale characteristics and motion guide border feature. Then proposes a new adaptive fusion mechanism
used these two new information adaptive to integrate into the Mean Shift tracking framework. Finally we designed a kind of automatic target model updating strategy to further improve tracking performance. Experimental results show that this algorithm can compensate shortcoming of the particle filter has too much computation
and can effectively overcome the fault that mean shift is easy to fall into local extreme value instead of global maximum value.Last because of the gray and fusion target motion information
this approach also inhibit interference from the background
ultimately improve the stability and the real-time of the target track. 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).
3D Model Based Vehicle Tracking Using Gradient Based Fitness Evaluation under Particle Filter Framework
会议论文
OAI收割
Istanbul, Turkey, 23-26 August 2010
作者:
Zhaoxiang Zhang
;
Kaiqi Huang
;
Tieniu Tan
;
Yunhong Wang
  |  
收藏
  |  
浏览/下载:12/0
  |  
提交时间:2017/02/09
Particle Filter
Model Based Tracking
Fitness Evaluation