中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
理论物理研究所 [12]
物理研究所 [6]
近代物理研究所 [3]
金属研究所 [1]
武汉物理与数学研究所 [1]
采集方式
OAI收割 [23]
内容类型
期刊论文 [23]
发表日期
2018 [1]
2016 [1]
2015 [1]
2011 [1]
2009 [3]
2008 [2]
更多
学科主题
Physics [12]
筛选
浏览/检索结果:
共23条,第1-10条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
The spin-s homogeneous central spin model: exact spectrum and dynamics
期刊论文
OAI收割
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2018, 页码: 19
作者:
Guan, Xi-Wen
;
Nepomechie, Rafael, I
  |  
收藏
  |  
浏览/下载:29/0
  |  
提交时间:2018/12/03
integrable spin chains and vertex models
quantum dots
quantum integrability (Bethe ansatz)
Exact solution of an su(n) spin torus
期刊论文
OAI收割
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2016, 页码: 19
作者:
Hao, Kun
;
Cao, Junpeng
;
Li, Guang-Liang
;
Yang, Wen-Li
;
Shi, Kangjie
  |  
收藏
  |  
浏览/下载:24/0
  |  
提交时间:2018/05/31
integrable spin chains and vertex models
quantum integrability (Bethe Ansatz)
Retrieve the Bethe states of quantum integrable models solved via the off-diagonal Bethe Ansatz
期刊论文
OAI收割
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2015, 页码: 18
作者:
Zhang, Xin
;
Li, Yuan-Yuan
;
Cao, Junpeng
;
Yang, Wen-Li
;
Shi, Kangjie
  |  
收藏
  |  
浏览/下载:15/0
  |  
提交时间:2018/05/31
integrable spin chains (vertex models)
quantum integrability (Bethe Ansatz)
Hidden Sp(2s+1)- or SO(2s+1)-symmetry and new exactly solvable models in ultracold atomic systems
期刊论文
OAI收割
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 卷号: 44, 期号: 34
Jiang, YZ
;
Cao, JP
;
Wang, YP
收藏
  |  
浏览/下载:131/0
  |  
提交时间:2013/09/17
BOSE-EINSTEIN CONDENSATION
DELTA-FUNCTION INTERACTION
ALGEBRAIC BETHE-ANSATZ
NONLINEAR SCHRODINGER MODEL
INVERSE SCATTERING METHOD
YANG-BAXTER EQUATION
QUANTUM SPIN CHAINS
FIELD-THEORY MODELS
MANY-BODY PROBLEM
ONE-DIMENSION
Topologically distinct classes of valence-bond solid states with their parent Hamiltonians
期刊论文
OAI收割
PHYSICAL REVIEW B, 2009, 卷号: 80, 期号: 1, 页码: -
作者:
Tu, Hong-Hao
;
Zhang, Guang-Ming
;
Xiang, Tao
;
Liu, Zheng-Xin
;
Ng, Tai-Kai
  |  
收藏
  |  
浏览/下载:19/0
  |  
提交时间:2012/08/02
Quantum Spin Chains
Density-matrix Renormalization
Ground-states
Symmetry-breaking
Hall States
Edge States
Antiferromagnets
Models
Surfaces
Path selection rule in matrix product systems
期刊论文
OAI收割
Physical Review B, 2009, 卷号: 80, 期号: 9
Z. Y. Sun
;
K. L. Yao
;
B. Luo
;
J. Liu
;
W. Yao
;
Z. L. Liu
收藏
  |  
浏览/下载:14/0
  |  
提交时间:2012/04/13
Hilbert spaces
magnetic transitions
matrix algebra
quantum
entanglement
spin systems
quantum
entanglement
states
chains
Topologically distinct classes of valence-bond solid states with their parent Hamiltonians
期刊论文
OAI收割
PHYSICAL REVIEW B, 2009, 卷号: 80, 期号: 1
Tu, HH
;
Zhang, GM
;
Xiang, T
;
Liu, ZX
;
Ng, TK
收藏
  |  
浏览/下载:14/0
  |  
提交时间:2013/09/23
QUANTUM SPIN CHAINS
DENSITY-MATRIX RENORMALIZATION
GROUND-STATES
SYMMETRY-BREAKING
HALL STATES
EDGE STATES
ANTIFERROMAGNETS
MODELS
SURFACES
String order and hidden topological symmetry in the SO(2n+1) symmetric matrix product states
期刊论文
OAI收割
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 卷号: 41, 期号: 41, 页码: -
作者:
Zhang, Guang-Ming
;
Tu, HH , Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
;
Tu, Hong-Hao
;
Xiang, Tao
  |  
收藏
  |  
浏览/下载:24/0
  |  
提交时间:2012/08/02
Quantum Spin Chains
Haldane Phase
Models
Antiferromagnets
Breaking
S=1
String order and hidden topological symmetry in the SO(2n+1) symmetric matrix product states
期刊论文
OAI收割
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 卷号: 41, 期号: 41
Tu, HH
;
Zhang, GM
;
Xiang, T
收藏
  |  
浏览/下载:19/0
  |  
提交时间:2013/09/24
QUANTUM SPIN CHAINS
HALDANE PHASE
MODELS
ANTIFERROMAGNETS
BREAKING
S=1
The algebraic Bethe ansatz for open vertex models
期刊论文
OAI收割
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2007, 页码: 35
作者:
Li, Guang-Liang
;
Shi, Kang-Jie
  |  
收藏
  |  
浏览/下载:29/0
  |  
提交时间:2018/05/31
integrable spin chains (vertex models)
quantum integrability (Bethe ansatz)