中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
力学研究所 [3]
地理科学与资源研究所 [3]
自动化研究所 [3]
南海海洋研究所 [1]
金属研究所 [1]
成都山地灾害与环境研... [1]
更多
采集方式
OAI收割 [14]
内容类型
期刊论文 [12]
会议论文 [2]
发表日期
2024 [1]
2023 [1]
2021 [2]
2020 [2]
2018 [1]
2015 [1]
更多
学科主题
Engineerin... [1]
Geoscience... [1]
固体力学::冲击动力... [1]
筛选
浏览/检索结果:
共14条,第1-10条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
发表日期升序
发表日期降序
提交时间升序
提交时间降序
作者升序
作者降序
A novel remote sensing method for monitoring Large-Scale grassland aboveground Biomass: The case study of grassland key belt in the Tibetan Plateau
期刊论文
OAI收割
ECOLOGICAL INDICATORS, 2024, 卷号: 169, 页码: 13
作者:
Wang, Juan
;
Zhang, Aiwu
;
Shi, Jiancong
;
Kang, Xiaoyan
;
He, Nianpeng
  |  
收藏
  |  
浏览/下载:12/0
  |  
提交时间:2025/03/03
Grassland key belt
Tibetan Plateau
Gradient variation of aboveground biomass
Multimodal features
Radiometric bit-depth & residual quantization
A Data-Driven Rutting Depth Short-Time Prediction Model With Metaheuristic Optimization for Asphalt Pavements Based on RIOHTrack
期刊论文
OAI收割
IEEE/CAA Journal of Automatica Sinica, 2023, 卷号: 10, 期号: 10, 页码: 1918-1932
作者:
Zhuoxuan Li
;
Iakov Korovin
;
Xinli Shi
  |  
收藏
  |  
浏览/下载:18/0
  |  
提交时间:2023/09/07
Extreme learning machine algorithm with residual correction (RELM), metaheuristic optimization
oil-gas transportation
RIOHTrack
rutting depth
Encoder-Decoder Full Residual Deep Networks for Robust Regression and Spatiotemporal Estimation
期刊论文
OAI收割
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 卷号: 32, 期号: 9, 页码: 4217-4230
作者:
Li, Lianfa
;
Fang, Ying
;
Wu, Jun
;
Wang, Jinfeng
;
Ge, Yong
  |  
收藏
  |  
浏览/下载:75/0
  |  
提交时间:2021/11/05
Bias
deep learning
encoder-decoder
full residual deep network
non-linear regression
prediction of satellite aerosol optical depth (AOD) and PM2.5
spatiotemporal modeling
Encoder-Decoder Full Residual Deep Networks for Robust Regression and Spatiotemporal Estimation
期刊论文
OAI收割
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 卷号: 32, 期号: 9, 页码: 4217-4230
作者:
Li, Lianfa
;
Fang, Ying
;
Wu, Jun
;
Wang, Jinfeng
;
Ge, Yong
  |  
收藏
  |  
浏览/下载:21/0
  |  
提交时间:2021/11/05
Bias
deep learning
encoder-decoder
full residual deep network
non-linear regression
prediction of satellite aerosol optical depth (AOD) and PM2.5
spatiotemporal modeling
Color‐Guided Depth Map Super‐Resolution Using a Dual‐Branch Multi‐Scale Residual Network with Channel Interaction
期刊论文
OAI收割
Sensors, 2020, 卷号: 20, 期号: 6, 页码: 1560
作者:
  |  
收藏
  |  
浏览/下载:19/0
  |  
提交时间:2020/04/30
Depth Map
Super‐resolution
Guidance
Residual Network
Channel Interaction
Color-Guided Depth Map Super-Resolution Using a Dual-Branch Multi-Scale Residual Network with Channel Interaction
期刊论文
OAI收割
SENSORS, 2020, 卷号: 20, 期号: 6, 页码: 16
作者:
Chen, Ruijin
;
Gao, Wei
  |  
收藏
  |  
浏览/下载:15/0
  |  
提交时间:2020/06/22
depth map
super-resolution
guidance
residual network
channel interaction
Scaling Law in Laser-Induced Shock Effects of NiTi Shape Memory Alloy
期刊论文
OAI收割
METALS, 2018, 卷号: 8, 期号: 3, 页码: 174
作者:
Wang X(王曦)
;
Xia WG(夏伟光)
;
Wu XQ(吴先前)
;
Huang CG(黄晨光)
收藏
  |  
浏览/下载:42/0
  |  
提交时间:2018/07/17
Shape Memory Alloy
Laser Shock Peening
Dimensionless Parameters
Residual Stress
Plastically Affected Depth
Sensitivity analysis of the residual depth about the residual velocity in the angle domain
期刊论文
OAI收割
CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2015, 卷号: 58, 期号: 8, 页码: 2927-2934
作者:
Xu Jia-Liang
;
Chang Xu
;
Wang Yi-Bo
  |  
收藏
  |  
浏览/下载:16/0
  |  
提交时间:2017/12/07
Migration velocity analysis in depth domain
Angle domain common image gathers
Residual depth
Residual velocity
Parametric study on single shot peening by dimensional analysis method incorporated with finite element method
期刊论文
OAI收割
ACTA MECHANICA SINICA, 2012, 卷号: 28, 期号: 3, 页码: 825-837
作者:
收藏
  |  
浏览/下载:28/0
  |  
提交时间:2013/01/18
Shot peening
Maximum compressive residual stress
Maximum depth of the dent
Dimensional analysis method
Finite element method
Induced Residual-Stresses
Prediction
Simulation
A study on the properties of the 12 May Wenchuan earthquake-induced debris flow
会议论文
OAI收割
Padua, 2011
作者:
Han, Y.S.
;
Han, J.
;
Zhu, Y.Y.
;
Kong, Y.P.
;
Su, F.H.
  |  
收藏
  |  
浏览/下载:26/0
  |  
提交时间:2018/11/08
Debris flows
Flow depth
Residual layers
Roll waves
Velocity profiles