中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
地理科学与资源研究... [14]
新疆生态与地理研究所 [4]
武汉岩土力学研究所 [3]
成都山地灾害与环境研... [1]
新疆理化技术研究所 [1]
采集方式
OAI收割 [23]
内容类型
期刊论文 [21]
SCI/SSCI论文 [1]
学位论文 [1]
发表日期
2025 [4]
2024 [11]
2023 [2]
2017 [1]
2013 [3]
2010 [1]
更多
学科主题
生物学::植物学::... [2]
水土保持与荒漠化防治 [1]
筛选
浏览/检索结果:
共23条,第1-10条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Spatiotemporal patterns and drivers of public concern about air pollution in China: Leveraging online big data and interpretable machine learning
期刊论文
OAI收割
ENVIRONMENTAL IMPACT ASSESSMENT REVIEW, 2025, 卷号: 114, 页码: 107897
作者:
Xu, Gang
;
Liu, Haimeng
;
Jia, Chunwang
;
Zhou, Tianyu
;
Shang, Jing
  |  
收藏
  |  
浏览/下载:20/0
  |  
提交时间:2025/04/21
Public environmental concern
Air quality
Environmental perception
Machine learning
XGBoost-SHAP
Environmental assessment
Environmental governance
Spatiotemporal variations of private e-bike trips with explainable data-driven technologies
期刊论文
OAI收割
CITIES, 2025, 卷号: 158, 页码: 105712
作者:
Wang, Peixiao
;
Zhang, Hengcai
;
Zhang, Beibei
;
Cheng, Shifen
;
Lu, Feng
  |  
收藏
  |  
浏览/下载:19/0
  |  
提交时间:2025/03/18
Private e -bike trips
Trip patterns
Spatiotemporal variations
Driving mechanisms
Spatiotemporal random forest
Improved SHAP
Analysis of the Driving Mechanism of Grassland Degradation in Inner Mongolia Grassland from 2015 to 2020 Using Interpretable Machine Learning Methods
期刊论文
OAI收割
LAND, 2025, 卷号: 14, 期号: 2, 页码: 386
作者:
Zhang, Zuopei
;
Hu, Yunfeng
;
Batunacun
  |  
收藏
  |  
浏览/下载:18/0
  |  
提交时间:2025/04/21
machine learning
grassland degradation
driving factors
SHAP method
climate change
Insights from Optimized Non-Landslide Sampling and SHAP Explainability for Landslide Susceptibility Prediction
期刊论文
OAI收割
APPLIED SCIENCES-BASEL, 2025, 卷号: 15, 期号: 3, 页码: 22
作者:
Li, Mengyuan
;
Tian, Hongling
  |  
收藏
  |  
浏览/下载:16/0
  |  
提交时间:2025/03/24
landslide susceptibility mapping
landslide susceptibility prediction
machine learning
non-landslide sampling strategy
SHAP
Probabilistic assessment of the thermal performance of low-enthalpy geothermal system under impact of spatially correlated heterogeneity by using XGBoost algorithms
期刊论文
OAI收割
ENERGY, 2024, 卷号: 313, 页码: 18
作者:
Liao, Jianxing
;
Xie, Yachen
;
Zhao, Pengfei
;
Xia, Kaiwen
;
Xu, Bin
  |  
收藏
  |  
浏览/下载:5/0
  |  
提交时间:2025/06/27
Thermal performance
Reservoir heterogeneity
XGBoost
SHAP
Probability of failure
Population Density Prediction at Township Scale Supported by Machine Learning Method: A Case Study in Inner Mongolia
期刊论文
OAI收割
ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2024, 卷号: 13, 期号: 12, 页码: 426
作者:
Cui, Chenxi
;
Hu, Yunfeng
;
Bao, Yuhai
;
Li, Hao
  |  
收藏
  |  
浏览/下载:15/0
  |  
提交时间:2025/02/24
Inner Mongolia
population density
machine learning
SHAP
Age disparities and socioeconomic factors for commuting distance in Beijing by explainable machine learning
期刊论文
OAI收割
CITIES, 2024, 卷号: 155, 页码: 105493
作者:
Chen, Liangkan
;
Chen, Mingxing
;
Fan, Chao
  |  
收藏
  |  
浏览/下载:15/0
  |  
提交时间:2025/01/17
Commuting distance
Age disparity
Mobile signaling data
XGBoost
SHAP
Beijing
Identifying payable cluster distributions for improved reservoir characterization: a robust unsupervised ML strategy for rock typing of depositional facies in heterogeneous rocks
期刊论文
OAI收割
GEOMECHANICS AND GEOPHYSICS FOR GEO-ENERGY AND GEO-RESOURCES, 2024, 卷号: 10, 期号: 1, 页码: 22
作者:
Ashraf, Umar
;
Anees, Aqsa
;
Zhang, Hucai
;
Ali, Muhammad
;
Thanh, Hung Vo
  |  
收藏
  |  
浏览/下载:5/0
  |  
提交时间:2025/06/27
Unsupervised ML algorithms
SOM
K-means clustering
Payable clusters distribution
DBSCAN
SHAP
Spatial patterns and mechanism of the impact of soil salinity on potentially toxic elements in coastal areas
期刊论文
OAI收割
SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 卷号: 951, 页码: 175802
作者:
Zhou, Mengge
;
Li, Yonghua
  |  
收藏
  |  
浏览/下载:26/0
  |  
提交时间:2024/10/21
Soil salinity
Soil PTEs
CatBoost-SHAP
MGWR
Pb
Spatiotemporal change of PM2.5 concentration in Beijing-Tianjin-Hebei and its prediction based on machine learning
期刊论文
OAI收割
URBAN CLIMATE, 2024, 卷号: 58, 页码: 102167
作者:
Liu, Nanjian
;
Hao, Zhixin
;
Zhao, Peng
  |  
收藏
  |  
浏览/下载:23/0
  |  
提交时间:2024/11/19
Machine learning
SHAP
Driving factors
Topographical regulation