中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
机构
采集方式
内容类型
发表日期
学科主题
筛选

浏览/检索结果: 共12条,第1-10条 帮助

条数/页: 排序方式:
A Comprehensive Survey on STP Approach to Finite Games 期刊论文  OAI收割
JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2021, 卷号: 34, 期号: 5, 页码: 1666-1680
作者:  
Cheng, Daizhan;  Wu, Yuhu;  Zhao, Guodong;  Fu, Shihua
  |  收藏  |  浏览/下载:23/0  |  提交时间:2022/04/02
Extended focused imaging in microscopy using structure tensor and guided filtering 期刊论文  OAI收割
Optics and Lasers in Engineering, 2021, 卷号: 140
作者:  
Ren, Zhenbo;  Guan, Peiyan;  Lam, Edmund Y.;  Zhao, Jianlin
  |  收藏  |  浏览/下载:33/0  |  提交时间:2021/02/08
TTH-RNN: Tensor-Train Hierarchical Recurrent Neural Network for Video Summarization 期刊论文  OAI收割
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2021, 卷号: 68, 期号: 4, 页码: 3629-3637
作者:  
Zhao, Bin;  Li, Xuelong;  Lu, Xiaoqiang
  |  收藏  |  浏览/下载:48/0  |  提交时间:2021/01/07
Image Inpainting Based on Structural Tensor Edge Intensity Model 期刊论文  OAI收割
International Journal of Automation and Computing, 2021, 卷号: 18, 期号: 2, 页码: 256-265
作者:  
Jing Wang, Yan-Hong Zhou, Hai-Feng Sima, Zhan-Qiang Huo, Ai-Zhong Mi
  |  收藏  |  浏览/下载:26/0  |  提交时间:2021/04/22
Sub-hypergraph matching based on adjacency tensor 期刊论文  OAI收割
COMPUTER VISION AND IMAGE UNDERSTANDING, 2019, 卷号: 183, 页码: 1-10
作者:  
Yang, Jing;  Yang, Xu;  Zhou, Zhang-Bing;  Liu, Zhi-Yong
  |  收藏  |  浏览/下载:56/0  |  提交时间:2019/07/11
Reweighted Infrared Patch-Tensor Model With Both Nonlocal and Local Priors for Single-Frame Small Target Detection 期刊论文  OAI收割
ieee journal of selected topics in applied earth observations and remote sensing, 2017, 卷号: 10, 期号: 8, 页码: 3752-3767
作者:  
Dai, Yimian;  Wu, Yiquan;  Wu, YQ
收藏  |  浏览/下载:61/0  |  提交时间:2017/09/14
A Novel PDE-Based Single Image Super-Resolution Reconstruction Method 期刊论文  OAI收割
international journal of pattern recognition and artificial intelligence, 2017, 卷号: 31, 期号: 6
作者:  
Zhao, Xiaodong;  Cao, Jianzhong;  Zhou, Zuofeng;  Huang, Jijiang
收藏  |  浏览/下载:30/0  |  提交时间:2017/04/12
Video super-resolution with registration-reliability regulation and adaptive total variation 期刊论文  OAI收割
JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2015, 卷号: 30, 页码: 181-190
作者:  
Zhang, Xinfeng;  Xiong, Ruiqin;  Ma, Siwei;  Li, Ge;  Gao, Wen
  |  收藏  |  浏览/下载:16/0  |  提交时间:2019/12/13
Using a scalar parameter to trace dislocation evolution in atomistic modeling 期刊论文  OAI收割
Computational Materials Science, 2015, 卷号: 96, 页码: 85-89
J. B. Yang; Z. F. Zhang; Y. N. Osetsky; R. E. Stoller
收藏  |  浏览/下载:31/0  |  提交时间:2015/01/14
Directional multiscale edge detection using the contourlet transform (EI CONFERENCE) 会议论文  OAI收割
2010 IEEE International Conference on Advanced Computer Control, ICACC 2010, March 27, 2010 - March 29, 2010, 445 Hoes Lane - P.O.Box 1331, Piscataway, NJ 08855-1331, United States
作者:  
Jin L.-X.;  Han S.-L.
收藏  |  浏览/下载:34/0  |  提交时间:2013/03/25
Wavelet multiresolution analysis allows us to detect edges at different scales  also to obtain other important aspects of the extracted edges. However  due to the usual two-dimensional tensor product  wavelet transform is not optimal for representing images. The main problem in edge detection using wavelet transform is that it can only capture point-singularities  and the extracted edges are not continuous. In order to solve that problem  we propose a new image edge detection method based on the contourlet transform. The directional multiresolution representation Contourlet takes advantages of the intrinsic geometrical structure of images  and is appropriate for the analysis of the image edges. Using the modulus maxima detection  an image edge detection method based on contourlet transform is proposed. To suppress the image noise effect on edge detection  the scale multiplication in contourlet domain is also proposed. Through real images experiments  the proposed edge detection method's performance for the extracted edges is analyzed and compared with other two edge detection methods. The experiment result proves that the proposed edge detection method improves over wavelet-based techniques and Canny detector  and also works well for noisy images. 2010 IEEE.