中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
遥感与数字地球研究所 [2]
长春光学精密机械与物... [1]
自动化研究所 [1]
采集方式
OAI收割 [4]
内容类型
会议论文 [3]
学位论文 [1]
发表日期
2013 [1]
2010 [2]
2007 [1]
学科主题
筛选
浏览/检索结果:
共4条,第1-4条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
群体智能优化算法及其在控制器参数整定中的应用
学位论文
OAI收割
工程硕士, 中国科学院自动化研究所: 中国科学院大学, 2013
作者:
韩久琦
收藏
  |  
浏览/下载:215/0
  |  
提交时间:2015/09/02
群体智能优化算法
果蝇优化算法
粒子群算法
PID控制器
Swarm intelligence optimization algorithms
fruit fly optimization algorithm
particle swarm optimization
PID controllers
A hybrid PSO/ACO algorithm for land cover classification
会议论文
OAI收割
2nd International Conference on Information Science and Engineering, ICISE2010,, Hangzhou, China, December 4, 2010 - December 6,2010
Dai, Qin
收藏
  |  
浏览/下载:20/0
  |  
提交时间:2014/12/07
Particle swarm optimization (PSO)
Algorithms
Artificial intelligence
Cellular automata
Image analysis
Image classification
Image reconstruction
Information science
Landforms
Remote sensing
Remote sensing image change detection based on swarm intelligent algorithm
会议论文
OAI收割
2010 International Conference on Multimedia Technology, ICMT 2010,, Ningbo, China, October 29, 2010 - October 31,2010
Dai, Qin
;
Liu, Jianbo
;
Liu, Shibin
收藏
  |  
浏览/下载:22/0
  |  
提交时间:2014/12/07
Algorithms
Artificial intelligence
Cellular automata
Data handling
Image reconstruction
Particle swarm optimization (PSO)
Remote sensing
Signal detection
An improved discrete particle swarm optimization algorithm for TSP (EI CONFERENCE)
会议论文
OAI收割
2007 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology - Workshops, WI-IAT Workshops 2007, November 2, 2007 - November 5, 2007, Silicon Valley, CA, United states
作者:
Wang Y.
;
Wang Y.
;
Wang Y.
;
Wang Y.
;
Wang Y.
收藏
  |  
浏览/下载:28/0
  |  
提交时间:2013/03/25
An Improved discrete particle swarm optimization (DPSO)-based algorithm for the traveling salesman problem (TSP) is proposed. In order to overcome the problem of premature convergence
a novel depressor is proposed and a diversity measure to control the swarm is also introduced which can be used to switch between the attractor and depressor. The proposed algorithm has been applied to a set of benchmark problems and compared with the existing algorithms for solving TSP using swarm intelligence. The results show that it can prevent premature convergence to a high degree
but still keeps a rapid convergence like the basic DPSO. 2007 IEEE.