中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
地质与地球物理研究所 [2]
长春光学精密机械与物... [2]
自动化研究所 [2]
计算技术研究所 [1]
国家空间科学中心 [1]
云南天文台 [1]
更多
采集方式
OAI收割 [10]
内容类型
期刊论文 [6]
会议论文 [4]
发表日期
2023 [1]
2021 [1]
2020 [1]
2018 [1]
2017 [1]
2010 [1]
更多
学科主题
天文学 [1]
筛选
浏览/检索结果:
共10条,第1-10条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
提交时间升序
提交时间降序
作者升序
作者降序
题名升序
题名降序
发表日期升序
发表日期降序
Seismic Signal Analysis Based on Adaptive Variational Mode Decomposition for High-speed Rail Seismic Waves
期刊论文
OAI收割
APPLIED GEOPHYSICS, 2023, 页码: 14
作者:
Lei, Yang
;
Liu, Lu
;
Bai, Wen-lei
;
Feng, Hai-xin
;
Wang, Zhi-yang
  |  
收藏
  |  
浏览/下载:29/0
  |  
提交时间:2024/01/09
High-speed rail seismic signal
Variational mode decomposition (VMD)
Optimization algorithm
Time-frequency analysis
A Revised Hilbert-Huang Transformation to Track Non-Stationary Association of Electroencephalography Signals
期刊论文
OAI收割
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2021, 卷号: 29, 页码: 841-851
作者:
Shan, Xiaocai
;
Huo, Shoudong
;
Yang, Lichao
;
Cao, Jun
;
Zou, Jiaru
  |  
收藏
  |  
浏览/下载:49/0
  |  
提交时间:2021/10/19
Electroencephalography
Time-frequency analysis
Transforms
Wavelet transforms
Oscillators
Signal resolution
Physiology
EEG
transient connectivity
cross-spectrum
Hilbert Huang transform
Interference Cancellation Based Channel Estimation for Massive MIMO Systems With Time Shifted Pilots
期刊论文
OAI收割
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2020, 卷号: 19, 期号: 10, 页码: 6826-6843
作者:
Sun, Bule
;
Zhou, Yiqing
;
Yuan, Jinhong
;
Shi, Jinglin
  |  
收藏
  |  
浏览/下载:40/0
  |  
提交时间:2020/12/10
Channel estimation
Interference
Antennas
Massive MIMO
Data communication
Time-frequency analysis
Signal to noise ratio
Finite antenna massive MIMO systems
pilot contamination
time shifted pilot
Polarimetric MDS of pedestrian
期刊论文
OAI收割
ELECTRONICS LETTERS, 2018, 卷号: 54, 期号: 17, 页码: 1051-1052
作者:
Kang, Wenwu
;
Zhang, Yunhua
;
Dong, Xiao
;
Kang, WW (reprint author), Chinese Acad Sci, Natl Space Sci Ctr, CAS Key Lab Microwave Remote Sensing, Beijing 100190, Peoples R China.
  |  
收藏
  |  
浏览/下载:44/0
  |  
提交时间:2018/10/12
Radar Polarimetry
Motion Estimation
Electromagnetic Wave Scattering
Time-frequency Analysis
Object Detection
Radar Signal Processing
Polarimetric Mds
Radar Observation
Signature Identification
Human Motions
Social Security Operation
Social Rescue Operation
Polarimetric Microdoppler Signatures
Motion-captured Dataset
Carnegie Mellon University Motion Graphic Laboratory
Feko
Matlab
Radar Scattering Calculation
Time-frequency Diagram
Hh Microdoppler
Ka-band Radar Experiment
Multi-scale signal transform and application of solar time series through phase analysis
会议论文
OAI收割
9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics, CISP-BMEI 2016, Datong, China, 2016-10-15
作者:
Deng LH(邓林华)
收藏
  |  
浏览/下载:34/0
  |  
提交时间:2017/04/28
statistical signal processing
time-frequency data analysis
wavelet coherence transform
A Real-Time Weighted-Eigenvector MUSIC Method for Time-Frequency Analysis of Electrogastrogram Slow Wave
会议论文
OAI收割
Buenos Aires, ARGENTINA, August 30 - September 4, 2010
作者:
Qin SJ(秦书嘉)
;
Miao L(缪磊)
;
Wang YC(王越超)
;
Yang, Chunmin
  |  
收藏
  |  
浏览/下载:26/0
  |  
提交时间:2012/06/06
Multiple Signal Classification (Music)
Time-frequency Analysis
Electrogastrogram (Egg)
Slow Wave
Adaptive signal decomposition based on local narrow band signals
期刊论文
OAI收割
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 卷号: 56, 期号: 7, 页码: 2669-2676
作者:
Peng, Silong
;
Hwang, Wen-Liang
收藏
  |  
浏览/下载:27/0
  |  
提交时间:2015/11/08
Adaptive signal decomposition, embedded mode decomposition, time-frequency analysis
Adaptive signal decomposition based on local narrow band signals
期刊论文
OAI收割
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 卷号: 56, 期号: 7, 页码: 2669-2676
作者:
Peng, Silong
;
Hwang, Wen-Liang
收藏
  |  
浏览/下载:20/0
  |  
提交时间:2015/11/08
Adaptive signal decomposition, embedded mode decomposition, time-frequency analysis
A high-accuracy parameter estimation algorithm for jointless Frequency-shift track circuit (EI CONFERENCE)
会议论文
OAI收割
ISECS International Colloquium on Computing, Communication, Control, and Management, CCCM 2008, August 3, 2008 - August 4, 2008, Guangzhou, China
作者:
Zheng X.
收藏
  |  
浏览/下载:38/0
  |  
提交时间:2013/03/25
FSK (Frequency Shift keying) signal
which has advantages of narrow-bandwidth
strong anti-interference ability
long transmission distance and so on
is used in jointless Frequency-shift track circuit to send different kinds of control signals. However
as FSK is non-linearly modulated
parameter estimation with high accuracy is hard to realize. Based on the spectrum analysis complement with time-frequency distribution
a highaccuracy FSK signal parameter estimation algorithm is put forward in this paper. According to the signal characteristics
under-sampling and ZFFT are used to improve the accuracy of spectrum analysis
and the base frequency resolution meets system requirement of 0.02Hz. Wigner-Ville distribution has an excellent time-frequency concentration while serious cross-term interference at the same time. Through the design of kernel function
the cross-terms are almost suppressed and the upper/down side frequency resolution meets the system requirement of 0.2Hz. The effectivities of all the methods mentioned above have been proved by MATLAB simulation
which pave a solid way for the development of high-accuracy FSK signal parameter estimation devices. 2008 IEEE.
Arc fault signatures detection on aircraft wiring system (EI CONFERENCE)
会议论文
OAI收割
6th World Congress on Intelligent Control and Automation, WCICA 2006, June 21, 2006 - June 23, 2006, Dalian, China
Hongkun Z.
;
Tao C.
;
Wenjun L.
收藏
  |  
浏览/下载:38/0
  |  
提交时间:2013/03/25
In this paper an arc fault detection method Is proposed based on characteristics of the fault current of an electric arc. A localized signal processing method Is developed using wavelet analysis to decompose the differential current signal Into a series of wavelet components
each of which Is a time-domain signal that covers a specific frequency band. Thus
more distinctive signal features that represent arc faults and other fault transient phenomena are extracted. As a result
by quantifying the extracted features
an arc faults are distinguished from phenomena similar to arc and other fault transients using the differences In the quantified features. Simulation studies have demonstrated that the proposed method Is reliable and simple. 2006 IEEE.