中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
长春光学精密机械与物... [2]
遥感与数字地球研究所 [1]
合肥物质科学研究院 [1]
烟台海岸带研究所 [1]
采集方式
OAI收割 [5]
内容类型
会议论文 [3]
期刊论文 [2]
发表日期
2022 [1]
2019 [1]
2010 [1]
2009 [1]
2008 [1]
学科主题
筛选
浏览/检索结果:
共5条,第1-5条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Observations of atmospheric CO2 and CO based on in-situ and ground-based remote sensing measurements at Hefei site, China
期刊论文
OAI收割
SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 卷号: 851
作者:
Shan, Changgong
;
Wang, Wei
;
Xie, Yu
;
Wu, Peng
;
Xu, Jiaqing
  |  
收藏
  |  
浏览/下载:44/0
  |  
提交时间:2022/12/22
CO2
CO
Remote sensing
Time-space distribution
Enhancement ratio of CO2 and CO
食用蔬菜能吸收和积累微塑料
期刊论文
OAI收割
科学通报, 2019, 卷号: 64, 期号: 9, 页码: 928-934
作者:
李连祯
;
周倩
;
尹娜
;
涂晨
;
骆永明
  |  
收藏
  |  
浏览/下载:145/0
  |  
提交时间:2020/06/17
微塑料
生菜
聚苯乙烯微球
吸收
积累
健康风险
microplastics
lettuce
polystyrene microbeads
uptake
accumulation
human health risk
Microplastic (MP, 100 nm-5 mm) may present an attributable risk to ecosystem and human health, and its pollution has become a global environmental concern. Despite a wealth of information on the accumulation of MPs in aquatic species, there is no information on the uptake and accumulation of MPs by higher plants. Terrestrial edible plants are directly exposed to MPs when agricultural soil was applied with organic manure, sewage sludge as fertilizer or plastic mulching. In this paper, the uptake of two sizes of polystyrene (PS) microbeads (0.2 and 1.0 mum) and then their distribution and migration in an edible plant lettuce were firstly investigated based on laboratory experiments. We used fluorescent markers to track PS microbeads in plant tissues and found fluorescence to be a sensitive and reliable detection method. Sections from untreated control lettuce showed no autofluorescence. When roots were treated with fluorescently labeled PS microbeads, the microbeads could be identified by its fluorescence. Our main study investigated the uptake of 0.2 mum beads, as few luminescence signals were observed in lettuce roots for 1.0 mum beads in our experiment. We observed that 0.2 mum fluorescent microbeads were extracellularly trapped in the root cap mucilage (which is a highly hydrated polysaccharide) and a dark green tip (which was typical of lettuce roots exposed to label PS beads) was usually visible to the naked eye. Confocal images revealed that the PS luminescence signals were mainly located in the vascular system and on the cell walls of the cortex tissue of the roots, indicated that the beads passed through the intercellular space via the apoplastic transport system. Once inside the central cylinder, the 0.2 mum PS beads were transferred from the roots to the stems and leaves via the vascular system following the transpiration stream. We also observed that the PS beads adhered to one another and self-assembled systematically into grape-like and (chain) string-like clusters in the intercellular space of the root and stem vascular tissue of lettuce plant. In contrast to the root and stem, PS beads were dispersed in the leaf tissue. Here, for the first time we provide evidence of the adherence, uptake, accumulation, and translocation of submicrometer MPs within an edible plant. Our findings highlight the previously underappreciated human exposure pathway to MPs through the consumption of contaminated crops and emphasize the need for new management strategies to control the release of MPs waste products into the terrestrial environment. Ultimately, the potential impacts of low range sized MPs on food safety of crop plants and human health need to be urgently considered.
Analysis of a diffractive microlens using the finite-difference time-domain method (EI CONFERENCE)
会议论文
OAI收割
作者:
Liu Y.
;
Liu H.
;
Liu H.
;
Liu H.
;
Liu Y.
收藏
  |  
浏览/下载:27/0
  |  
提交时间:2013/03/25
The finite-difference time-domain (FDTD) method is used as rigorous electromagnetic analysis model to calculate the field for a diffractive microlens (DML). The FDTD is used for the entire solution rather than using a near- to far-field propagation method to obtain the far-field energy distribution
thus
all the results are vector based. We derived a formula to calculate the magnitude of electric field
which is time dependent and can be used to graphically show the light wave propagation and focusing process through a DML. Both the comparison and the integral methods are presented to obtain wave amplitude in full solution space
and the distribution of light energy behind a DML is illustrated based on the wave amplitude. The formula of diffractive efficiency of the DML is derived from a time-averaged Ponyting vector
which can indicate the propagation direction of light energy. Application of these formulations in the analysis of a DML example demonstrates the high accuracy and efficiency of our method. 2010 Society of Photo-Optical Instrumentation Engineers.
Rigorous vector analysis of diffractive microlens by using of finitedifference time-domain method (EI CONFERENCE)
会议论文
OAI收割
2009 International Conference on Optical Instruments and Technology, OIT 2009, October 19, 2009 - October 22, 2009, Shanghai, China
作者:
Liu Y.
;
Liu H.
;
Liu H.
;
Liu H.
;
Liu Y.
收藏
  |  
浏览/下载:32/0
  |  
提交时间:2013/03/25
We use finite difference time domain (FDFD) method as rigorous vector analysis model to simulate the focusing process of diffractive microlens (DML). Differing with most analysis model which the near field distributions are calculated by FDTD and then far field are obtained by using of propagation method
we obtain the fields in whole computational space by using of FDTD only. The advantages are that all the results are vector based and the computational time is saved greatly. In this paper
we present two methods to obtain wave amplitude
one is comparison method
and the other is integral method. Depending on wave amplitude in the whole computational space
one can conveniently obtain distributions of electric field intensity and calculate the time-average Poynting vector. We also present the formulation for calculating diffractive efficiency of DML based on time-average Poynting vector which denotes energy flow. As demonstration
a DML is analyzed by using of these algorithms. The time depended graphic results of FDTD show the process of wave propagation. The distribution of electric field intensity illustrates the focusing of the normal incident light. The focus pattern in the focal plane is also show. The diffractive efficiency of the DML is calculated by using of the energy flow method in this paper. The results show the high accuracy and efficiency of the model. 2009 SPIE.
Temporal analysis of land surface temperature in beijing utilizing remote sensing imagery
会议论文
OAI收割
2008 IEEE International Geoscience and Remote Sensing Symposium - Proceedings, Boston, MA, United states, July 6, 2008 - July 11,2008
Huang, Chudong
;
Shao, Yun
;
Li, Jing
;
Chen, Jinsong
;
Liu, Jinghui
收藏
  |  
浏览/下载:21/0
  |  
提交时间:2014/12/07
Atmospheric temperature
Electromagnetic wave emission
Remote sensing
Size distribution
Space time adaptive processing
Surface analysis
Surface measurement
Surface properties
Switching systems
Windows