中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
自动化研究所 [4]
合肥物质科学研究院 [3]
长春光学精密机械与物... [1]
西安光学精密机械研究... [1]
采集方式
OAI收割 [9]
内容类型
期刊论文 [8]
会议论文 [1]
发表日期
2023 [1]
2022 [2]
2019 [1]
2018 [2]
2017 [1]
2012 [1]
更多
学科主题
筛选
浏览/检索结果:
共9条,第1-9条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Dual feature enhanced video super-resolution network based on low-light scenarios
期刊论文
OAI收割
SIGNAL PROCESSING-IMAGE COMMUNICATION, 2023, 卷号: 115, 页码: 8
作者:
Zhang, Huan
;
Cao, Yihao
;
Cai, Jianghui
;
Cai, Xingjuan
;
Zhang, Wensheng
  |  
收藏
  |  
浏览/下载:16/0
  |  
提交时间:2023/11/17
Video super-resolution (VSR)
Feature enhancement
Information re-fusion
Attention mechanism
Neural texture transfer assisted video coding with adaptive up-sampling
期刊论文
OAI收割
SIGNAL PROCESSING-IMAGE COMMUNICATION, 2022, 卷号: 107, 页码: 10
作者:
Yu, Li
;
Chang, Wenshuai
;
Quan, Weize
;
Xiao, Jimin
;
Yan, Dong-Ming
  |  
收藏
  |  
浏览/下载:47/0
  |  
提交时间:2022/07/25
High-efficiency video coding (HEVC)
Reference-based super-resolution
Low bitrate
Video compression
Deep learning
Machine learning
Video super-resolution with inverse recurrent net and hybrid local fusion
期刊论文
OAI收割
NEUROCOMPUTING, 2022, 卷号: 489
作者:
Li, Dingyi
;
Wang, Zengfu
;
Yang, Jian
  |  
收藏
  |  
浏览/下载:64/0
  |  
提交时间:2022/05/16
Video super-resolution
Bidirectional recurrent convolutional neural
network
Sliding-window
Local fusion
Video Super-Resolution Using Non-Simultaneous Fully Recurrent Convolutional Network
期刊论文
OAI收割
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 卷号: 28, 期号: 3, 页码: 1342-1355
作者:
Li, Dingyi
;
Liu, Yu
;
Wang, Zengfu
  |  
收藏
  |  
浏览/下载:27/0
  |  
提交时间:2019/12/25
Video super-resolution
non-simultaneous
recurrent convolutional network
residual connection
model ensemble
Video Super-Resolution via Bidirectional Recurrent Convolutional Networks
期刊论文
OAI收割
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 卷号: 40, 期号: 4, 页码: 1015-1028
作者:
Huang, Yan
;
Wang, Wei
;
Wang, Liang
  |  
收藏
  |  
浏览/下载:49/0
  |  
提交时间:2017/06/19
Deep Learning
Recurrent Neural Networks
3d Convolution
Video Super-resolution
Video super-resolution based on spatial-temporal recurrent residual networks
期刊论文
OAI收割
COMPUTER VISION AND IMAGE UNDERSTANDING, 2018, 卷号: 168, 页码: 79-92
作者:
Yang, Wenhan
;
Feng, Jiashi
;
Xie, Guosen
;
Liu, Jiaying
;
Guo, Zongming
  |  
收藏
  |  
浏览/下载:56/0
  |  
提交时间:2018/10/10
Spatial Residue
Temporal Residue
Video Super-resolution
Inter-frame Motion Context
Intra-frame Redundancy
Simultaneously retargeting and super-resolution for stereoscopic video
期刊论文
OAI收割
MULTIMEDIA TOOLS AND APPLICATIONS, 2017, 卷号: 76, 期号: 8, 页码: 11081-11095
作者:
Kang, Kai
;
Cao, Yang
;
Wang, Zengfu
收藏
  |  
浏览/下载:35/0
  |  
提交时间:2018/07/27
Stereoscopic Video
Retargeting
Super-resolution
Video super-resolution with 3D adaptive normalized convolution
期刊论文
OAI收割
neurocomputing, 2012, 卷号: 94, 页码: 140-151
作者:
Zhang, Kaibing
;
Mu, Guangwu
;
Yuan, Yuan
;
Gao, Xinbo
;
Tao, Dacheng
收藏
  |  
浏览/下载:63/0
  |  
提交时间:2012/09/03
Normalized convolution (NC)
Motion estimation
Video super-resolution (SR)
Super-resolution using adaptive blur parameter estimation (EI CONFERENCE)
会议论文
OAI收割
2010 6th International Conference on Wireless Communications, Networking and Mobile Computing, WiCOM 2010, September 23, 2010 - September 25, 2010, Chengdu, China
作者:
Wang H.
;
Wang H.
;
Wang H.
;
Wang H.
;
Liu G.
收藏
  |  
浏览/下载:16/0
  |  
提交时间:2013/03/25
Super-resolution is a term for a set of methods of increasing image or video resolution. All these methods are based on the same idea: using information from several images to create one upsized image. In most of the super-resolution algorithms
the blur parameter of a LR-image model is always manually set as a default value. In this paper
we propose a method to adaptively estimate the blur parameter. We get the initial image of iteration by fusing all low-resolution images. When it is used in MAP algorithm
three iterations are enough to get a stable solution. It is greatly reduce the computational power compared with other MAP algorithms. Experiments to real image sequences show that it well preserved the image detail and the reconstructed image is clear. 2010 IEEE.