中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
机构
采集方式
内容类型
发表日期
学科主题
筛选

浏览/检索结果: 共9条,第1-9条 帮助

条数/页: 排序方式:
Improving Prediction of Self-interacting Proteins Using Stacked Sparse Auto-Encoder with PSSM profiles 期刊论文  OAI收割
INTERNATIONAL JOURNAL OF BIOLOGICAL SCIENCES, 2018, 卷号: 14, 期号: 8, 页码: 983-991
作者:  
Wang, YB (Wang, Yan-Bin);  You, ZH (You, Zhu-Hong);  Li, LP (Li, Li-Ping);  Huang, DS (Huang, De-Shuang);  Zhou, FF (Zhou, Feng-Feng)
  |  收藏  |  浏览/下载:43/0  |  提交时间:2018/07/16
Accurate Prediction of ncRNA-Protein Interactions From the Integration of Sequence and Evolutionary Information 期刊论文  OAI收割
FRONTIERS IN GENETICS, 2018, 卷号: 9, 期号: 10, 页码: 1-9
作者:  
Zhan, ZH (Zhan, Zhao-Hui)[ 1 ];  You, ZH (You, Zhu-Hong)[ 2 ];  Li, LP (Li, Li-Ping)[ 2 ];  Zhou, Y (Zhou, Yong)[ 1 ];  Yi, HC (Yi, Hai-Cheng)[ 2 ]
  |  收藏  |  浏览/下载:27/0  |  提交时间:2018/10/19
Efficient optimization approach for fast GPU computation of Zernike moments 期刊论文  OAI收割
Journal of Parallel and Distributed Computing, 2018, 卷号: 111, 页码: 104-114
作者:  
Xuan, Y. B.;  Li, D. Y.;  Han, W.
  |  收藏  |  浏览/下载:13/0  |  提交时间:2019/09/17
3D model retrieval using constructive-learning for cross-model correlation 期刊论文  OAI收割
Neurocomputing, 2018, 卷号: 275, 页码: 2019-01-09
作者:  
Yang, J. B.;  Zhao, J.;  Sun, Q.
  |  收藏  |  浏览/下载:14/0  |  提交时间:2019/09/17
Vision-Based Traffic Sign Recognition System for Intelligent Vehicles 期刊论文  OAI收割
advances in intelligent systems and computing, 2014, 卷号: 215, 页码: 347-362
作者:  
Yang J(杨静);  Kong B(孔斌)
收藏  |  浏览/下载:20/0  |  提交时间:2014/12/03
Image registration based on Mexican-hat wavelets and pseudo-Zernike moments (EI CONFERENCE) 会议论文  OAI收割
2012 World Automation Congress, WAC 2012, June 24, 2012 - June 28, 2012, Puerto Vallarta, Mexico
作者:  
Liu Y.;  Liu Y.;  Liu Y.
收藏  |  浏览/下载:37/0  |  提交时间:2013/03/25
Image registration is a key technique in pattern recognition and image processing  and it is widely used in many application areas such as computer vision  remote sensing  image fusion and object tracking. A method for image registration combining Mexican-hat wavelets and pseudo-Zernike moments is proposed. Firstly  feature points are extracted using scale-interaction Mexican-hat wavelets in the reference image and sensed image respectively. Then  pseudo-Zernike moments are used to match them and classical RANSAC used to eliminate the wrong matches. And then  the well match points are used to estimate the best affine transform parameters by least squares minimization. At last  the sensed image is transformed and resampled to accomplish the image registration. The experiments indicate that the proposed algorithm extracts feature points and matches them exactly and eliminates wrong matched points effectively and achieves nice registration results. 2012 TSI Press.  
A Robust Traffic Sign Recognition System for Intelligent Vehicles 会议论文  OAI收割
proceedings of the sixth international conference on image and graphics (icig 2011), 安徽合肥, 2011-08-12
作者:  
Yang J(杨静);  Kong B(孔斌)
收藏  |  浏览/下载:23/0  |  提交时间:2014/12/03
The coordinate acquisition of the sine welding seam based on Zernike moments edge detection 会议论文  OAI收割
IEEE International Conference on Automation and Logistics, Jinan, China, August 18-21, 2007
作者:  
Gao SY(高世一);  Zhao MY(赵明扬);  Zhang L(张雷);  Wang LZ(王立柱);  Zou YY(邹媛媛)
收藏  |  浏览/下载:30/0  |  提交时间:2012/06/06
A novel starting-point-independent wavelet coefficient shape matching (EI CONFERENCE) 会议论文  OAI收割
ICO20: Optical Information Processing, August 21, 2005 - August 26, 2005, Changchun, China
Hu S.; Zhu M.; Wu C.; Song H.-J.
收藏  |  浏览/下载:18/0  |  提交时间:2013/03/25
In many computer vision tasks  in order to improve the accuracy and robustness to the noise  wavelet analysis is preferred for the natural multi-resolution property. However  the wavelet representation suffers from the dependency of the starting point of the sampled contour. For overcoming the problem that the wavelet representation depends on the starting point of the sampled contour  the Zernike moments are introduced  and a novel Starting-Point-lndependent wavelet coefficient shape matching algorithm is presented. The proposed matching algorithm firstly gains the object contours  and give the translation and scale invariant object shape representation. The object shape representation is converted to the dyadic wavelet representation by the wavelet transform. And then calculate the Zernike moments of wavelet representation in different scales. With respect to property of rotation invariant of Zernike moments  consider the Zernike moments as the feature vector to calculate the dissimilarity between the object and template image  which overcoming the problem of dependency of starting point. The experimental results have proved the proposed algorithm to be efficient  precise  and robust.