中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
计算技术研究所 [1]
长春光学精密机械与物... [1]
合肥物质科学研究院 [1]
国家授时中心 [1]
采集方式
OAI收割 [4]
内容类型
期刊论文 [3]
会议论文 [1]
发表日期
2024 [1]
2022 [1]
2020 [1]
2009 [1]
学科主题
筛选
浏览/检索结果:
共4条,第1-4条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
发表日期升序
发表日期降序
提交时间升序
提交时间降序
作者升序
作者降序
A Novel Adaptive Noise Covariance Matrix Estimation and Filtering Method: Application to Multiobject Tracking
期刊论文
OAI收割
IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2024, 卷号: 9
作者:
Jiang, Chao
;
Wang, Zhiling
;
Liang, Huawei
;
Wang, Yajun
  |  
收藏
  |  
浏览/下载:10/0
  |  
提交时间:2024/11/20
Covariance matrices
Noise measurement
Estimation
Correlation
Filtering
Calibration
Technological innovation
Kalman filtering
adaptive estimation
process and measurement noise covariance matrices
multiobject tracking
Towards Predicting the Measurement Noise Covariance with a Transformer and Residual Denoising Autoencoder for GNSS/INS Tightly-Coupled Integrated Navigation
期刊论文
OAI收割
REMOTE SENSING, 2022, 卷号: 14, 期号: 7, 页码: 22
作者:
Xu, Hongfu
;
Luo, Haiyong
;
Wu, Zijian
;
Wu, Fan
;
Bao, Linfeng
  |  
收藏
  |  
浏览/下载:31/0
  |  
提交时间:2022/12/07
tightly coupled integrated navigation
measurement noise estimation
transformer
adaptive Kalman filtering
GPS/INS松耦合组合导航的自适应卡尔曼滤波算法研究
期刊论文
OAI收割
时间频率学报, 2020, 卷号: 43, 期号: 3, 页码: 222
作者:
周先林
;
张慧君
;
和涛
;
李孝辉
  |  
收藏
  |  
浏览/下载:35/0
  |  
提交时间:2021/11/29
integrated navigation
adaptive Kalman filtering
innovation
noise variance
组合导航
自适应卡尔曼滤波
新息
噪声方差
Real-time motive vehicle detection with adaptive background updating model and HSV colour space (EI CONFERENCE)
会议论文
OAI收割
4th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test and Measurement Technology and Equipment, November 19, 2008 - November 21, 2008, Chengdu, China
Rong-Hui Z.
;
Bai Y.
;
Hong-guang J.
;
Chen T.
收藏
  |  
浏览/下载:70/0
  |  
提交时间:2013/03/25
In the transportation monitor system
we set up the area of interest (AOI) of the vehicle model and adjust the size of AOI dynamically in order to track vehicle accurately. The results of experiment show that
motive vehicle detection by adopting digital image is one of key technologies. To detect motive vehicle accurately
the arithmetic proposed in the paper can suppress shadow availably
we establish an adaptive background updating model firstly. Noise is suppressed by using modality filter
detect motive vehicle accurately and satisfy real-time motive vehicle tracking. 2009 SPIE.
and we obtain binary image by using maximum entropy to choose dynamic adaptive threshold. Based on positive information of shadow and aspect feature of motive vehicle
we adopt HSV colour space and double threshold to solve the problem of vehicle shadow. According to prediction result of Kalman filtering