中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
机构
采集方式
内容类型
发表日期
学科主题
筛选

浏览/检索结果: 共4条,第1-4条 帮助

条数/页: 排序方式:
A Novel Adaptive Noise Covariance Matrix Estimation and Filtering Method: Application to Multiobject Tracking 期刊论文  OAI收割
IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2024, 卷号: 9
作者:  
Jiang, Chao;  Wang, Zhiling;  Liang, Huawei;  Wang, Yajun
  |  收藏  |  浏览/下载:10/0  |  提交时间:2024/11/20
Towards Predicting the Measurement Noise Covariance with a Transformer and Residual Denoising Autoencoder for GNSS/INS Tightly-Coupled Integrated Navigation 期刊论文  OAI收割
REMOTE SENSING, 2022, 卷号: 14, 期号: 7, 页码: 22
作者:  
Xu, Hongfu;  Luo, Haiyong;  Wu, Zijian;  Wu, Fan;  Bao, Linfeng
  |  收藏  |  浏览/下载:31/0  |  提交时间:2022/12/07
GPS/INS松耦合组合导航的自适应卡尔曼滤波算法研究 期刊论文  OAI收割
时间频率学报, 2020, 卷号: 43, 期号: 3, 页码: 222
作者:  
周先林;  张慧君;  和涛;  李孝辉
  |  收藏  |  浏览/下载:35/0  |  提交时间:2021/11/29
Real-time motive vehicle detection with adaptive background updating model and HSV colour space (EI CONFERENCE) 会议论文  OAI收割
4th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test and Measurement Technology and Equipment, November 19, 2008 - November 21, 2008, Chengdu, China
Rong-Hui Z.; Bai Y.; Hong-guang J.; Chen T.
收藏  |  浏览/下载:70/0  |  提交时间:2013/03/25
In the transportation monitor system  we set up the area of interest (AOI) of the vehicle model and adjust the size of AOI dynamically in order to track vehicle accurately. The results of experiment show that  motive vehicle detection by adopting digital image is one of key technologies. To detect motive vehicle accurately  the arithmetic proposed in the paper can suppress shadow availably  we establish an adaptive background updating model firstly. Noise is suppressed by using modality filter  detect motive vehicle accurately and satisfy real-time motive vehicle tracking. 2009 SPIE.  and we obtain binary image by using maximum entropy to choose dynamic adaptive threshold. Based on positive information of shadow and aspect feature of motive vehicle  we adopt HSV colour space and double threshold to solve the problem of vehicle shadow. According to prediction result of Kalman filtering