消息
×
loading..
中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
自动化研究所 [3]
金属研究所 [2]
地质与地球物理研究所 [2]
长春光学精密机械与物... [1]
昆明动物研究所 [1]
采集方式
OAI收割 [9]
_filter
_filter
_filter
筛选
浏览/检索结果:
共9条,第1-9条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
作者升序
作者降序
题名升序
题名降序
发表日期升序
发表日期降序
提交时间升序
提交时间降序
Auditory Receptive Field Net Based Automatic Snore Detection for Wearable Devices
期刊论文
OAI收割
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 卷号: 27, 期号: 5, 页码: 2255-2263
作者:
Hu, Xiyuan
;
Sun, Jingpeng
;
Dong, Jinping
;
Zhang, Xuyun
|
收藏
|
浏览/下载:19/0
|
提交时间:2023/11/17
Feature extraction
Sleep apnea
Hidden Markov models
Mel frequency cepstral coefficient
Convolution
Computational modeling
Brain modeling
Artificial intelligence (AI)
convolutional neural networks (CNNs)
auditory receptive field (ARF) module
snore detection
Spatial-temporal graph convolutional network for Alzheimer classification based on brain functional connectivity imaging of electroencephalogram
期刊论文
OAI收割
HUMAN BRAIN MAPPING, 2022, 页码: 16
作者:
Shan, Xiaocai
;
Cao, Jun
;
Huo, Shoudong
;
Chen, Liangyu
;
Sarrigiannis, Ptolemaios Georgios
|
收藏
|
浏览/下载:46/0
|
提交时间:2022/07/18
artificial intelligence
brain association
electroencephalogram
graph convolutional neural network
machine learning
Brain functional and effective connectivity based on electroencephalography recordings: A review
期刊论文
OAI收割
HUMAN BRAIN MAPPING, 2021, 页码: 20
作者:
Cao, Jun
;
Zhao, Yifan
;
Shan, Xiaocai
;
Wei, Hua-liang
;
Guo, Yuzhu
|
收藏
|
浏览/下载:42/0
|
提交时间:2022/07/01
artificial intelligence
brain association
electroencephalogram
machine learning
survey
Special Issue of BICS 2016
期刊论文
OAI收割
COGNITIVE COMPUTATION, 2018, 卷号: 10, 期号: 2, 页码: 282-283
作者:
Liu, Cheng-Lin
;
Hussain, Amir
;
Luo, Bin
;
Tan, Kay Chen
;
Zeng, Yi
|
收藏
|
浏览/下载:38/0
|
提交时间:2018/08/08
Bics
Brain-inspired
Artificial Intelligence
Deep Neural Networks
Imitating the Brain with Neurocomputer A “New” Way Towards Artificial General Intelligence
期刊论文
OAI收割
International Journal of Automation and Computing, 2017, 卷号: 14, 期号: 5, 页码: 520-531
作者:
Tie-Jun Huang
|
收藏
|
浏览/下载:23/0
|
提交时间:2021/02/23
Artificial general intelligence (AGI)
neuromorphic computing
neurocomputer
brain-like intelligence
imitationalism.
Artificial Selection on Brain-Expressed Genes during the Domestication of Dog
期刊论文
OAI收割
MOLECULAR BIOLOGY AND EVOLUTION, 2013, 卷号: 30, 期号: 8, 页码: 1867–1876
作者:
Li Y
;
vonHoldt BM
;
Reynolds A
;
Boyko AR
;
Wayne RK
收藏
|
浏览/下载:28/0
|
提交时间:2013/08/28
artificial selection
dog domestication
brain evolution
behavioral evolution
New development thoughts on the bio-inspired intelligence based control for unmanned combat aerial vehicle
期刊论文
OAI收割
SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2010, 卷号: 53, 期号: 8, 页码: 2025-2031
作者:
Duan HaiBin
;
Shao Shan
;
Su BingWei
;
Zhang Lei
|
收藏
|
浏览/下载:27/0
|
提交时间:2021/02/02
bio-inspired intelligence
unmanned combat aerial vehicle (UCAV)
artificial brain
autonomous control
bayesian network
bio-inspired hardware
heterogeneous cooperative control
New development thoughts on the bio-inspired intelligence based control for unmanned combat aerial vehicle
期刊论文
OAI收割
SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2010, 卷号: 53, 期号: 8, 页码: 2025-2031
作者:
Duan HaiBin
;
Shao Shan
;
Su BingWei
;
Zhang Lei
|
收藏
|
浏览/下载:17/0
|
提交时间:2021/02/02
bio-inspired intelligence
unmanned combat aerial vehicle (UCAV)
artificial brain
autonomous control
bayesian network
bio-inspired hardware
heterogeneous cooperative control
Mental imagery knowledge representation mode of human-level intelligence system (EI CONFERENCE)
会议论文
OAI收割
4th International Conference on Rough Sets and Knowledge Technology, RSKT 2009, July 14, 2009 - July 16, 2009, Gold Coast, QLD, Australia
作者:
Zhang D.
;
Zhang D.
收藏
|
浏览/下载:31/0
|
提交时间:2013/03/25
For the human-level intelligence simulation we should simulate it from the essence of intelligence and with the research results of brain science
cognitive science
artificial intelligence and others. In our study
a mental imagery knowledge representation mode had been established based on cognitive mechanism of human. Two kinds of table named mental imagery concept attributes table and concept attribute value ranges table had been used together to represent mental imagery knowledge in system. Mental imagery concept attributes table which formed by the thought of concept lattice was used to decide relations among concepts and attributes under the circumstance of coarse granularity. While concept attribute value ranges table was used to record differences of individual objects belong to the same concept under the circumstance of fine granularity. The concrete structured method of tables and decision-making process of system were described in the paper. Finally
the validity and feasibility of the knowledge representation mode are illustrated with real examples. 2009 Springer Berlin Heidelberg.
首页
上一页
1
下一页
末页