中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
地理科学与资源研究所 [1]
长春光学精密机械与物... [1]
西安光学精密机械研究... [1]
采集方式
OAI收割 [3]
内容类型
会议论文 [2]
期刊论文 [1]
发表日期
2022 [1]
2012 [1]
2004 [1]
学科主题
筛选
浏览/检索结果:
共3条,第1-3条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
A Star-Identification Algorithm Based on Global Multi-Triangle Voting
期刊论文
OAI收割
APPLIED SCIENCES-BASEL, 2022, 卷号: 12, 期号: 19
作者:
Yuan, Xiaobin
;
Zhu, Jingping
;
Zhu, Kaijian
;
Li, Xiaobin
  |  
收藏
  |  
浏览/下载:48/0
  |  
提交时间:2022/10/25
star identification
feature unit voting
two-dimension lookup table
principal component analysis (PCA)
largest cluster method
An improved hyperspectral classification algorithm based on back-propagation neural networks (EI CONFERENCE)
会议论文
OAI收割
2012 2nd International Conference on Remote Sensing, Environment and Transportation Engineering, RSETE 2012, June 1, 2012 - June 3, 2012, Nanjing, China
作者:
Yu P.
;
Yu P.
收藏
  |  
浏览/下载:34/0
  |  
提交时间:2013/03/25
In this paper
a new method is proposed to improve the classification performance of hyperspectral images by combining the principal component analysis (PCA)
genetic algorithm (GA)
and artificial neural networks (ANNs). First
some characteristics of the hyperspectral remotely sensed data
such as high correlation
high redundancy
etc.
are investigated. Based on the above analysis
we propose to use the principal component analysis to capture the main information existing in the hyperspectral images and reduce its dimensionality consequently. Next
we use neural networks to classify the reduced hyperspectral data. Since the back-propagation neural network we used is easy to suffer from the local minimum problem
we adopt a genetic algorithm to optimize the BP network's weights and the threshold. Experimental results show that the classification accuracy is improved and the time of calculation is reduced as well. 2012 IEEE.
Chaotic analysis on monthly precipitation on hills region in middle SiChuan, China
会议论文
OAI收割
Men B. H.
收藏
  |  
浏览/下载:18/0
  |  
提交时间:2012/06/30
correlation dimension
hills region in middle of SiChuan
principal
component analysis (PCA) method
kolmogorov entropy
time-series
deterministic chaos
strange attractors
river flow
rainfall
nonlinearity
redundancies
storm