中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
数学与系统科学研究院 [3]
长春光学精密机械与物... [1]
采集方式
OAI收割 [4]
内容类型
期刊论文 [3]
会议论文 [1]
发表日期
2021 [1]
2020 [2]
2010 [1]
学科主题
筛选
浏览/检索结果:
共4条,第1-4条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Forecasting hourly PM2.5 based on deep temporal convolutional neural network and decomposition method
期刊论文
OAI收割
APPLIED SOFT COMPUTING, 2021, 卷号: 113, 页码: 15
作者:
Jiang, Fuxin
;
Zhang, Chengyuan
;
Sun, Shaolong
;
Sun, Jingyun
  |  
收藏
  |  
浏览/下载:41/0
  |  
提交时间:2022/04/29
PM2.5 concentration forecasting
Complete ensemble empirical mode
decomposition with adaptive noise
Temporal convolutional
Data patterns
Deep learning
Deterministic and probabilistic wind speed forecasting with de-noising-reconstruction strategy and quantile regression based algorithm
期刊论文
OAI收割
RENEWABLE ENERGY, 2020, 卷号: 162, 页码: 1208-1226
作者:
Hu, Jianming
;
Heng, Jiani
;
Wen, Jiemei
;
Zhao, Weigang
  |  
收藏
  |  
浏览/下载:23/0
  |  
提交时间:2021/04/26
Renewable energy
Complete empirical mode decomposition with adaptive noise
Quantile regression neural network
Wind speed forecasting
Distance correlation
A decomposition-ensemble approach for tourism forecasting
期刊论文
OAI收割
ANNALS OF TOURISM RESEARCH, 2020, 卷号: 81, 页码: 16
作者:
Xie, Gang
;
Qian, Yatong
;
Wang, Shouyang
  |  
收藏
  |  
浏览/下载:19/0
  |  
提交时间:2020/06/30
Tourism demand
Complete ensemble empirical mode decomposition with adaptive noise
Data characteristic analysis
Time series forecasting
Destriping method using lifting wavelet transform of remote sensing image (EI CONFERENCE)
会议论文
OAI收割
2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering, CMCE 2010, August 24, 2010 - August 26, 2010, Changchun, China
作者:
He B.
收藏
  |  
浏览/下载:30/0
  |  
提交时间:2013/03/25
Based on the characteristic of striping noise in remote sensing images
a new destriping noise technique for the improved multi-threshold method using lifting wavelet transform applied to remote sensing imagery is presented in this letter. Have used the lifting wavelet decomposition algorithm
the thresholds are determined by corresponding wavelet coefficients in every scale. Remote sensing imagery is so large that the algorithm must be fast and effective. The lifting wavelet transform is easily realized and inexpensive in computer time and storage space compared with the traditional wavelet transform. We also compare the method with some traditional destriping methods both by visual inspection and by appropriate indexes of quality of the denoised images. From the comparison we can see that the adaptive threshold method can preserve the spectral characteristic of the images while effectively remove striping noise and it did better than the existed ones. 2010 IEEE.