中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
心理研究所 [3]
长春光学精密机械与物... [1]
自动化研究所 [1]
采集方式
OAI收割 [5]
内容类型
会议论文 [4]
期刊论文 [1]
发表日期
2019 [1]
2017 [2]
2016 [1]
2011 [1]
学科主题
感知觉心理学 [1]
视觉心理物理与模型(... [1]
视觉注意、学习与记忆 [1]
筛选
浏览/检索结果:
共5条,第1-5条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
发表日期升序
发表日期降序
提交时间升序
提交时间降序
作者升序
作者降序
Adversarial image generation by combining content and style
期刊论文
OAI收割
IET IMAGE PROCESSING, 2019, 卷号: 13, 期号: 14, 页码: 2716-2723
作者:
Liu, Songyan
;
Zhao, Chaoyang
;
Gao, Yunze
;
Wang, Jinqiao
;
Tang, Ming
  |  
收藏
  |  
浏览/下载:54/0
  |  
提交时间:2020/03/30
image recognition
feature extraction
learning (artificial intelligence)
image texture
adversarial image generation
unique style
reference images
style feature extraction module
style specific image generation model
double-cycle training strategy
natural-content pairs
input natural images
style exchange
style-exchanged images
licence-plate image
handbags images
Teaching visual orientation discrimination through tactile learning
会议论文
OAI收割
曲阜, 2017.7.1
作者:
Ding-Zhi Hu
;
Guo-Zhen Liu
;
Cong Yu
  |  
收藏
  |  
浏览/下载:45/0
  |  
提交时间:2017/12/25
Perceptual Learning
concept learning
orientation
double training
Mutual transfer between visual and auditory temporal interval learning supports a central clock in temporal processing
会议论文
OAI收割
曲阜, 2017.7.2
作者:
Shu-Chen Guan
;
Ying-Zi Xiong
;
Cong Yu
  |  
收藏
  |  
浏览/下载:31/0
  |  
提交时间:2017/12/27
temporal interval discrimination
cross-modal
double training
双训练范式引起知觉学习迁移的心理物理学机制
会议论文
OAI收割
2016年第一届北京视觉科学会议, 北京, 2016-07
作者:
Yin-Yu Xie
;
Rui Wang
;
Cong Yu
收藏
  |  
浏览/下载:48/0
  |  
提交时间:2017/01/09
perceptual learning
double training
psychophysical mechanisms
Double inverted pendulum control based on three-loop PID and improved BP neural network (EI CONFERENCE)
会议论文
OAI收割
2011 2nd International Conference on Digital Manufacturing and Automation, ICDMA 2011, August 5, 2011 - August 7, 2011, Zhangjiajie, Hunan, China
作者:
Fan Y.
收藏
  |  
浏览/下载:42/0
  |  
提交时间:2013/03/25
To deal with the defects of BP neural networks used in balance control of inverted pendulum
such as longer train time and converging in partial minimum
this article reaLizes the control of double inverted pendulum with improved BP algorithm of artificial neural networks(ANN)
builds up a training model of test simulation and the BP network is 6-10-1 structure. Tansig function is used in hidden layer and PureLin function is used in output layer
LM is used in training algorithm. The training data is acquried by three-loop PID algorithm. The model is learned and trained with Matlab calculating software
and the simuLink simulation experiment results prove that improved BP algorithm for inverted pendulum control has higher precision
better astringency and lower calculation. This algorithm has wide appLication on nonLinear control and robust control field in particular. 2011 IEEE.