中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
机构
采集方式
内容类型
发表日期
学科主题
筛选

浏览/检索结果: 共9条,第1-9条 帮助

条数/页: 排序方式:
An extreme bias-penalized forecast combination approach to commodity price forecasting 期刊论文  OAI收割
INFORMATION SCIENCES, 2022, 卷号: 615, 页码: 774-793
作者:  
Zhang, Yifei;  Wang, Jue;  Yu, Lean;  Wang, Shouyang
  |  收藏  |  浏览/下载:30/0  |  提交时间:2023/02/07
Artificial bee colony-based combination approach to forecasting agricultural commodity prices 期刊论文  OAI收割
INTERNATIONAL JOURNAL OF FORECASTING, 2022, 卷号: 38, 期号: 1, 页码: 21-34
作者:  
Wang, Jue;  Wang, Zhen;  Li, Xiang;  Zhou, Hao
  |  收藏  |  浏览/下载:26/0  |  提交时间:2022/04/02
Forecasting Tourism Demand With a New Time-Varying Forecast Averaging Approach 期刊论文  OAI收割
JOURNAL OF TRAVEL RESEARCH, 2021, 页码: 19
作者:  
Sun, Yuying;  Zhang, Jian;  Li, Xin;  Wang, Shouyang
  |  收藏  |  浏览/下载:38/0  |  提交时间:2022/04/02
A New Two-Stage Approach with Boosting and Model Averaging for Interval-Valued Crude Oil Prices Forecasting in Uncertainty Environments 期刊论文  OAI收割
FRONTIERS IN ENERGY RESEARCH, 2021, 卷号: 9, 页码: 11
作者:  
Huang, Bai;  Sun, Yuying;  Wang, Shouyang
  |  收藏  |  浏览/下载:26/0  |  提交时间:2022/04/02
Time-varying model averaging? 期刊论文  OAI收割
JOURNAL OF ECONOMETRICS, 2021, 卷号: 222, 期号: 2, 页码: 974-992
作者:  
Sun, Yuying;  Hong, Yongmiao;  Lee, Tae-Hwy;  Wang, Shouyang;  Zhang, Xinyu
  |  收藏  |  浏览/下载:25/0  |  提交时间:2021/06/01
A multi-granularity heterogeneous combination approach to crude oil price forecasting 期刊论文  OAI收割
ENERGY ECONOMICS, 2020, 卷号: 91, 页码: 9
作者:  
Wang, Jue;  Zhou, Hao;  Hong, Tao;  Li, Xiang;  Wang, Shouyang
  |  收藏  |  浏览/下载:39/0  |  提交时间:2021/01/14
A semi-heterogeneous approach to combining crude oil price forecasts 期刊论文  OAI收割
INFORMATION SCIENCES, 2018, 卷号: 460, 页码: 279-292
作者:  
Wang, Jue;  Li, Xiang;  Hong, Tao;  Wang, Shouyang
  |  收藏  |  浏览/下载:44/0  |  提交时间:2018/10/07
Forecasting with model selection or model averaging: a case study for monthly container port throughput 期刊论文  OAI收割
TRANSPORTMETRICA A-TRANSPORT SCIENCE, 2016, 卷号: 12, 期号: 4, 页码: 366-384
作者:  
Gao, Yan;  Luo, Meifeng;  Zou, Guohua
  |  收藏  |  浏览/下载:31/0  |  提交时间:2018/07/30
Study on color model conversion for camera with neural network based on the combination between second general revolving combination design and genetic algorithm (EI CONFERENCE) 会议论文  OAI收割
ICO20: Illumination, Radiation, and Color Technologies, August 21, 2005 - August 26, 2005, Changchun, China
作者:  
Li Z.
收藏  |  浏览/下载:36/0  |  提交时间:2013/03/25
Munsell color system is selected to establish the mutual conversion between RGB and L*a*b* color model for camera. The color luminance meter and CCD camera synchronously measure the same color card  XYZ value is gotten from the color luminance meter  the training error is 0.000748566  it can show that the method combining second general revolving combination design with genetic algorithm can optimize the hidden-layer structure of neural network. Using the data of testing set to test this network and calculating the color difference between forecast value and true value  the color picture captured from CCD camera is expressed for RGB value as the input of neural network  and the L*a*b* value converted from XYZ value is regarded as the real color value of target card  which the difference is not obvious comparing with forecast result  the maximum is 5.6357 NBS  namely the output of neural network. The neural network of two hidden-layers is considered  the minimum is 0.5311 NBS  so the second general revolving combination design is introduced into optimizing the structure of neural network  and the average of color difference is 3.1744 NBS.  which can carry optimization through unifying project design  data processing and the precision of regression equation. Their mathematics model of encoding space is gained  and the significance inspection shows the confidence degree of regression equation is 99%. The mathematics model is optimized by genetic algorithm  optimization solution is gotten  and function value of the goal is 0.0007168. The neural network of the optimization solution is trained