中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
机构
采集方式
内容类型
发表日期
学科主题
筛选

浏览/检索结果: 共10条,第1-10条 帮助

条数/页: 排序方式:
Lung Nodule Segmentation and Uncertain Region Prediction With an Uncertainty-Aware Attention Mechanism 期刊论文  OAI收割
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2024, 卷号: 43, 期号: 4, 页码: 1284-1295
作者:  
Yang, Han;  Wang, Qiuli;  Zhang, Yue;  An, Zhulin;  Liu, Chen
  |  收藏  |  浏览/下载:11/0  |  提交时间:2024/12/06
Multilevel Attention Unet Segmentation Algorithm for Lung Cancer Based on CT Images 期刊论文  OAI收割
CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 卷号: 78, 期号: 2, 页码: 1569-1589
作者:  
Wang, Huan;  Qiu, Shi;  Zhang, Benyue;  Xiao, Lixuan
  |  收藏  |  浏览/下载:9/0  |  提交时间:2024/07/25
Accurate Lung Nodule Segmentation With Detailed Representation Transfer and Soft Mask Supervision 期刊论文  OAI收割
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 页码: 13
作者:  
Wang, Changwei;  Xu, Rongtao;  Xu, Shibiao;  Meng, Weiliang;  Xiao, Jun
  |  收藏  |  浏览/下载:13/0  |  提交时间:2023/12/21
SCOAT-Net: A novel network for segmenting COVID-19 lung opacification from CT images 期刊论文  OAI收割
PATTERN RECOGNITION, 2021, 卷号: 119, 页码: 12
作者:  
Zhao, Shixuan;  Li, Zhidan;  Chen, Yang;  Zhao, Wei;  Xie, Xingzhi
  |  收藏  |  浏览/下载:44/0  |  提交时间:2021/12/01
Toward data-efficient learning: A benchmark for COVID-19 CT lung and infection segmentation 期刊论文  OAI收割
MEDICAL PHYSICS, 2021, 页码: 14
作者:  
Ma, Jun;  Wang, Yixin;  An, Xingle;  Ge, Cheng;  Yu, Ziqi
  |  收藏  |  浏览/下载:31/0  |  提交时间:2021/12/01
Automatic Lung Segmentation Algorithm on Chest X-ray Images Based on Fusion Variational Auto-Encoder and Three-Terminal Attention Mechanism 期刊论文  OAI收割
SYMMETRY-BASEL, 2021, 卷号: 13, 期号: 5, 页码: 1-15
作者:  
Cao FD(曹飞道);  Zhao HC(赵怀慈)
  |  收藏  |  浏览/下载:39/0  |  提交时间:2021/06/12
Central focused convolutional neural networks: Developing a data-driven model for lung nodule segmentation 期刊论文  OAI收割
MEDICAL IMAGE ANALYSIS, 2017, 卷号: 40, 期号: 40, 页码: 172-183
作者:  
Wang, Shuo;  Zhou, Mu;  Liu, Zaiyi;  Liu, Zhenyu;  Gu, Dongsheng
  |  收藏  |  浏览/下载:46/0  |  提交时间:2018/01/08
Lung Lesion Extraction Using a Toboggan Based Growing Automatic Segmentation Approach 期刊论文  OAI收割
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 卷号: 35, 期号: 1, 页码: 337-353
作者:  
Song, Jiangdian;  Yang, Caiyun;  Fan, Li;  Wang, Kun;  Yang, Feng
收藏  |  浏览/下载:52/0  |  提交时间:2016/03/19
Automated delineation of lung tumors from CT images using a single click ensemble segmentation approach 期刊论文  OAI收割
PATTERN RECOGNITION, 2013, 卷号: 46, 期号: 3, 页码: 692-702
作者:  
Gu, Yuhua;  Kumar, Virendra;  Hall, Lawrence O.;  Goldgof, Dmitry B.;  Li, Ching-Yen
收藏  |  浏览/下载:28/0  |  提交时间:2015/08/12
MGRG-morphological gradient based 3D region growing algorithm for airway tree segmentation in image guided intervention therapy (EI CONFERENCE) 会议论文  OAI收割
2nd International Symposium on Bioelectronics and Bioinformatics, ISBB 2011, November 3, 2011 - November 5, 2011, Suzhou, China
作者:  
Zhang T.;  Gao X.
收藏  |  浏览/下载:43/0  |  提交时间:2013/03/25
Accurate surgical planning and guidance plays an important role in successful implementation of image guided intervention. In interventional lung cancer diagnosis and treatments  precise segmentation of airway trees from lung CT images provides crucial visualization for preoperative planning and intraoperative guidance to avoid major trachea injury. While 3D region growing can segment main the parts of an airway tree (trachea  left and right main bronchus  as well as bronchi)  the method fails at bronchiole segmentation and is not robust. Mathematical morphology is an anatomical detective. In this paper  we propose a morphological gradient based region growing (MGRG) algorithm to overcome the intensity inhomogeneity  and improve the robustness of 3D region growing on extraction of bronchioles. The MGRG algorithm is validated using lung CT images  and results show that it is able to segment bronchioles  and outperforms the traditional region growing method on airway tree segmentation. 2011 IEEE.