中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
自动化研究所 [4]
计算技术研究所 [3]
长春光学精密机械与物... [1]
沈阳自动化研究所 [1]
西安光学精密机械研究... [1]
采集方式
OAI收割 [10]
内容类型
期刊论文 [9]
会议论文 [1]
发表日期
2024 [2]
2023 [1]
2021 [3]
2017 [1]
2016 [1]
2013 [1]
更多
学科主题
筛选
浏览/检索结果:
共10条,第1-10条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Lung Nodule Segmentation and Uncertain Region Prediction With an Uncertainty-Aware Attention Mechanism
期刊论文
OAI收割
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2024, 卷号: 43, 期号: 4, 页码: 1284-1295
作者:
Yang, Han
;
Wang, Qiuli
;
Zhang, Yue
;
An, Zhulin
;
Liu, Chen
  |  
收藏
  |  
浏览/下载:11/0
  |  
提交时间:2024/12/06
Lung nodules segmentation
uncertainty
multiple annotations
computed tomography
Multilevel Attention Unet Segmentation Algorithm for Lung Cancer Based on CT Images
期刊论文
OAI收割
CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 卷号: 78, 期号: 2, 页码: 1569-1589
作者:
Wang, Huan
;
Qiu, Shi
;
Zhang, Benyue
;
Xiao, Lixuan
  |  
收藏
  |  
浏览/下载:9/0
  |  
提交时间:2024/07/25
Lung cancer
computed tomography
computer-aided diagnosis
Unet
segmentation
Accurate Lung Nodule Segmentation With Detailed Representation Transfer and Soft Mask Supervision
期刊论文
OAI收割
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 页码: 13
作者:
Wang, Changwei
;
Xu, Rongtao
;
Xu, Shibiao
;
Meng, Weiliang
;
Xiao, Jun
  |  
收藏
  |  
浏览/下载:13/0
  |  
提交时间:2023/12/21
Detailed representation transfer
lung nodules segmentation
medical images segmentation
soft mask
SCOAT-Net: A novel network for segmenting COVID-19 lung opacification from CT images
期刊论文
OAI收割
PATTERN RECOGNITION, 2021, 卷号: 119, 页码: 12
作者:
Zhao, Shixuan
;
Li, Zhidan
;
Chen, Yang
;
Zhao, Wei
;
Xie, Xingzhi
  |  
收藏
  |  
浏览/下载:44/0
  |  
提交时间:2021/12/01
COVID-19
Convolutional neural network
Segmentation
Lung opacification
Attention mechanism
Toward data-efficient learning: A benchmark for COVID-19 CT lung and infection segmentation
期刊论文
OAI收割
MEDICAL PHYSICS, 2021, 页码: 14
作者:
Ma, Jun
;
Wang, Yixin
;
An, Xingle
;
Ge, Cheng
;
Yu, Ziqi
  |  
收藏
  |  
浏览/下载:31/0
  |  
提交时间:2021/12/01
COVID‐
19 CT
domain generalization
few‐
shot learning
knowledge transfer
lung and infection segmentation
Automatic Lung Segmentation Algorithm on Chest X-ray Images Based on Fusion Variational Auto-Encoder and Three-Terminal Attention Mechanism
期刊论文
OAI收割
SYMMETRY-BASEL, 2021, 卷号: 13, 期号: 5, 页码: 1-15
作者:
Cao FD(曹飞道)
;
Zhao HC(赵怀慈)
  |  
收藏
  |  
浏览/下载:39/0
  |  
提交时间:2021/06/12
chest X-ray images
U-Net
variational auto-encoder
three-terminal attention mechanism
lung segmentation
Central focused convolutional neural networks: Developing a data-driven model for lung nodule segmentation
期刊论文
OAI收割
MEDICAL IMAGE ANALYSIS, 2017, 卷号: 40, 期号: 40, 页码: 172-183
作者:
Wang, Shuo
;
Zhou, Mu
;
Liu, Zaiyi
;
Liu, Zhenyu
;
Gu, Dongsheng
  |  
收藏
  |  
浏览/下载:46/0
  |  
提交时间:2018/01/08
Lung Nodule Segmentation
Convolutional Neural Networks
Deep Learning
Computer-aided Diagnosis
Lung Lesion Extraction Using a Toboggan Based Growing Automatic Segmentation Approach
期刊论文
OAI收割
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 卷号: 35, 期号: 1, 页码: 337-353
作者:
Song, Jiangdian
;
Yang, Caiyun
;
Fan, Li
;
Wang, Kun
;
Yang, Feng
收藏
  |  
浏览/下载:52/0
  |  
提交时间:2016/03/19
Back-off mechanism
computed tomography (CT)
lung lesion segmentation
region growing
toboggan
Automated delineation of lung tumors from CT images using a single click ensemble segmentation approach
期刊论文
OAI收割
PATTERN RECOGNITION, 2013, 卷号: 46, 期号: 3, 页码: 692-702
作者:
Gu, Yuhua
;
Kumar, Virendra
;
Hall, Lawrence O.
;
Goldgof, Dmitry B.
;
Li, Ching-Yen
收藏
  |  
浏览/下载:28/0
  |  
提交时间:2015/08/12
Image features
Delineation
Lung tumor
Lesion
CT
Region growing
Ensemble segmentation
MGRG-morphological gradient based 3D region growing algorithm for airway tree segmentation in image guided intervention therapy (EI CONFERENCE)
会议论文
OAI收割
2nd International Symposium on Bioelectronics and Bioinformatics, ISBB 2011, November 3, 2011 - November 5, 2011, Suzhou, China
作者:
Zhang T.
;
Gao X.
收藏
  |  
浏览/下载:43/0
  |  
提交时间:2013/03/25
Accurate surgical planning and guidance plays an important role in successful implementation of image guided intervention. In interventional lung cancer diagnosis and treatments
precise segmentation of airway trees from lung CT images provides crucial visualization for preoperative planning and intraoperative guidance to avoid major trachea injury. While 3D region growing can segment main the parts of an airway tree (trachea
left and right main bronchus
as well as bronchi)
the method fails at bronchiole segmentation and is not robust. Mathematical morphology is an anatomical detective. In this paper
we propose a morphological gradient based region growing (MGRG) algorithm to overcome the intensity inhomogeneity
and improve the robustness of 3D region growing on extraction of bronchioles. The MGRG algorithm is validated using lung CT images
and results show that it is able to segment bronchioles
and outperforms the traditional region growing method on airway tree segmentation. 2011 IEEE.