中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
地理科学与资源研究所 [2]
长春光学精密机械与物... [2]
国家空间科学中心 [1]
数学与系统科学研究院 [1]
中国科学院大学 [1]
采集方式
OAI收割 [6]
iSwitch采集 [1]
内容类型
期刊论文 [5]
会议论文 [2]
发表日期
2022 [2]
2016 [2]
2015 [1]
2012 [1]
2011 [1]
学科主题
筛选
浏览/检索结果:
共7条,第1-7条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
A new multi-scalar framework for quantifying the impacts of climate change and human activities on streamflow variation
期刊论文
OAI收割
WATER SUPPLY, 2022, 页码: 18
作者:
Ma, Mingwei
;
Wang, Zhaohang
;
Cui, Huijuan
;
Wang, Wenchuan
;
Jiang, Liuyuwei
  |  
收藏
  |  
浏览/下载:28/0
  |  
提交时间:2023/01/30
attribution analysis
budyko-based decomposition method
monthly ABCD model
multi-scalar framework
streamflow
A new multi-scalar framework for quantifying the impacts of climate change and human activities on streamflow variation
期刊论文
OAI收割
WATER SUPPLY, 2022, 页码: 18
作者:
Ma, Mingwei
;
Wang, Zhaohang
;
Cui, Huijuan
;
Wang, Wenchuan
;
Jiang, Liuyuwei
  |  
收藏
  |  
浏览/下载:52/0
  |  
提交时间:2023/01/30
attribution analysis
budyko-based decomposition method
monthly ABCD model
multi-scalar framework
streamflow
Model-based target decomposition with the pi/4 mode compact polarimetry data
期刊论文
iSwitch采集
Science china-information sciences, 2016, 卷号: 59, 期号: 6, 页码: 10
作者:
Guo, Shenglong
;
Li, Yang
;
Hong, Wen
;
Wang, Jianfeng
;
Guo, Xiaoyang
收藏
  |  
浏览/下载:34/0
  |  
提交时间:2019/05/09
Pi/4 mode compact polarimetry
Mode-based target decomposition
Stokes vector
Rvog model
Radar polarimetry
An Extension of a Complete Model-Based Decomposition of Polarimetric SAR Data
期刊论文
OAI收割
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 卷号: 13, 期号: 2, 页码: 287-291
作者:
Zhu, Feiya
;
Zhang, Yunhua
;
Li, Dong
收藏
  |  
浏览/下载:37/0
  |  
提交时间:2017/01/18
Helix angle (HA) variation
model-based decomposition
nonnegative eigenvalue decomposition (NNED)
orientation angle (OA) variation
polarimetric synthetic aperture radar (PolSAR)
A novel mode-characteristic-based decomposition ensemble model for nuclear energy consumption forecasting
期刊论文
OAI收割
ANNALS OF OPERATIONS RESEARCH, 2015, 卷号: 234, 期号: 1, 页码: 111-132
作者:
Tang, Ling
;
Wang, Shuai
;
He, Kaijian
;
Wang, Shouyang
  |  
收藏
  |  
浏览/下载:24/0
  |  
提交时间:2018/07/30
Decomposition ensemble model
Data-characteristic-based modeling
Nuclear energy consumption forecasting
Time series analysis
Intelligent knowledge management
Image quality assessment based on gradient complex matrix (EI CONFERENCE)
会议论文
OAI收割
2012 International Conference on Systems and Informatics, ICSAI 2012, May 19, 2012 - May 20, 2012, Yantai, China
作者:
Wang Y.
;
Wang Y.
;
Wang Y.
;
Wang Y.
;
Wang Y.
收藏
  |  
浏览/下载:22/0
  |  
提交时间:2013/03/25
An image quality assessment model based on gradient complex matrix is proposed. The vertical and horizontal gradient information of grayscale image is calculated. Complex number is used to construct the measuring matrix. Singular value decomposition is performed in order to obtain the main structure information of the image. The singular value feature vectors of the image gradient complex matrices corresponding to the reference image and the distorted image are used to measure the structural similarity of the two images. PSNR is taken as a tool to evaluate the gradient distribution similarity. Their properties are analyzed by using LIVE database and nonlinearity regression function. 2012 IEEE.
Study of the neural network constitutive models for turfy soil with different decomposition degree (EI CONFERENCE)
会议论文
OAI收割
2011 2nd International Conference on Mechanic Automation and Control Engineering, MACE 2011, July 15, 2011 - July 17, 2011, Inner Mongolia, China
作者:
Nie L.
收藏
  |  
浏览/下载:18/0
  |  
提交时间:2013/03/25
The turfy soil is of a special humus soil. The decomposition degree is the main factor on the physical and mechanical properties of turfy soil. To build the turfy soil constitutive model
there are a few shortages such as the calculation cumbersome and low accuracy for parameter value with the method of traditional models. Furthermore
those methods did not reflect the influence of strength that effected by decomposition degree of the turfy soil. In this paper
the relationship of stress-strain with different decomposition degrees of turfy soil was carried out through indoor tests. Based on above experimental results
an improved method
which divided into different zones according to different decomposition degrees of turfy soil and calculated combining with neural network constitutive model is put forward. The result shows that
the neural network of turfy soil has good fitting precision and good generalization ability. It can fully describe the influence of the turfy soil. 2011 IEEE.